gab*_*how 2 performance matlab delimiter cell-array
你好我有一个char的单元格数组(由下划线分隔),我想转换为double.我是在for
循环中完成的,但由于尺寸很大,需要花费很多时间.我想用cellfun
,但我不知道如何通过分隔符.
你能帮助我吗?
listofwords = {'02_04_04_52';'02_24_34_02'};
for i = 1 : size(listofwords,1)
listofwords_double(i,:) = str2double(strsplit(listofwords{i},'_'))./1000;
end
listofwords_double2= cellfun(@strsplit , listofwords);
Run Code Online (Sandbox Code Playgroud)
基准
按照Divakar的要求
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.3398%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.4068%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -47.1129%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.2882%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.2325%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.0161%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.9728%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.4267%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.2867%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -46.3031%
Run Code Online (Sandbox Code Playgroud)
你可以使用这样的匿名函数 -
listofwords_double2= cellfun(@(x) strsplit(x,'_') , listofwords,'uni',0)
Run Code Online (Sandbox Code Playgroud)
另一种方法regexp
和单线 -
cell2mat(cellfun(@(x) str2double(regexp(x,'_','Split'))./1000 , listofwords,'uni',0))
Run Code Online (Sandbox Code Playgroud)
方法#1
N = 4; %// Edit this to 10 in your actual case
cat_cell = strcat(listofwords,'_');
one_str = [cat_cell{:}];
one_str(end)=[];
sep_cells = regexp(one_str,'_','Split');
out = reshape(str2double(sep_cells),N,[]).'./1000; %//'# desired output
Run Code Online (Sandbox Code Playgroud)
方法#2
对上述解决方案进行基准测试strcat
可能会成为瓶颈.要摆脱这种情况,您可以使用cumsum
基于该方法的方法.这是下一个 -
N = 4; %// Edit this to 10 in your actual case
lens = cellfun(@numel,listofwords);
tlens = sum(lens);
idx = zeros(1,tlens); %// Edit this to "idx(1,tlens)=0;" for more performance
idx(cumsum(lens(1:end-1))+1)=1;
idx2 = (1:tlens) + cumsum(idx);
one_str(1:max(idx2))='_';
one_str(idx2) = [listofwords{:}];
sep_cells = regexp(one_str,'_','Split');
out = reshape(str2double(sep_cells),N,[]).'./1000; %//'# desired output
Run Code Online (Sandbox Code Playgroud)
方法#3
现在,这个使用sscanf
并且看起来非常快.这是代码 -
N = 4; %// Edit this to 10 in your actual case
lens = cellfun(@numel,listofwords);
tlens = sum(lens);
idx(1,tlens)=0;
idx(cumsum(lens(1:end-1))+1)=1;
idx2 = (1:tlens) + cumsum(idx);
one_str(1:max(idx2)+1)='_';
one_str(idx2) = [listofwords{:}];
delim = repmat('%d_',1,N*numel(lens));
out = reshape(sscanf(one_str, delim),N,[])'./1000; %//'# desired output
Run Code Online (Sandbox Code Playgroud)
按照要求通过@ CST-Link的,这里是比较他的"海怪"的标杆eval
反对approach #3
.基准测试代码看起来像这样 -
clear all
listofwords = repmat({'02_04_04_52_23_14_54_672_0'},100000,1);
for k = 1:50000
tic(); elapsed = toc(); %// Warm up tic/toc
end
tic
N = 9; %// Edit this to 10 in your actual case
lens = cellfun(@numel,listofwords);
tlens = sum(lens);
idx(1,tlens)=0;
idx(cumsum(lens(1:end-1))+1)=1;
idx2 = (1:tlens) + cumsum(idx);
one_str(1:max(idx2)+1)='_';
one_str(idx2) = [listofwords{:}];
delim = repmat('%d_',1,N*numel(lens));
out = reshape(sscanf(one_str, delim),N,[])'./1000; %//'# desired output
time1 = toc;
clear out delim one_str idx2 idx tlens lens N
tic
n_numbers = 1+sum(listofwords{1}=='_');
n_words = numel(listofwords);
listofwords_double = zeros(n_numbers, n_words);
for i = 1:numel(listofwords)
temp = ['[', listofwords{i}, ']'];
temp(temp=='_') = ';';
listofwords_double(:,i) = eval(temp);
end;
listofwords_double = (listofwords_double / 1000).';
time2 = toc;
speedup = ((time1-time2)/time2)*100;
disp(['Speedup with EVAL over NO-LOOP-SSCANF = ' num2str(speedup) '%'])
Run Code Online (Sandbox Code Playgroud)
以下是代码运行几次时的基准测试结果 -
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = 0.30609%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = 0.012241%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -2.3146%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = 0.33678%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -1.8189%
>> benchmark1
Speedup with EVAL over NO-LOOP-SSCANF = -0.12254%
Run Code Online (Sandbox Code Playgroud)
sscanf
在一些积极的加速中,观察结果并观察一些负面加速(在这些情况下表明更好),我的意见是坚持sscanf
.