返回3D scipy.spatial.Delaunay的表面三角形

s.t*_*t.h 9 python cloud delaunay points scipy

我有这个问题.我尝试通过scipy.spatial.Delaunay对点云进行三角测量.我用了:

tri = Delaunay(points) # points: np.array() of 3d points 
indices = tri.simplices
vertices = points[indices]
Run Code Online (Sandbox Code Playgroud)

但是,这段代码返回了四面体.怎么可能只返回表面三角形?

谢谢

Juh*_*uha 7

要使其像代码形式一样工作,您必须将曲面参数化为2D.例如,在球(r,theta,psi)的情况下,半径是恒定的(将其丢弃)并且点由(θ,psi)给出,即2D.

Scipy Delaunay是N维三角剖分,因此如果你给3D点,它会返回3D对象.给它2D点并返回2D对象.

下面是我用于为openSCAD创建多面体的脚本.U和V是我的参数化(x和y),这些是我给Delaunay的坐标.请注意,现在"Delaunay三角剖分属性"仅适用于u,v坐标(角度在uv-spatial中最大化而不是xyz -space等).

该示例是来自http://matplotlib.org/1.3.1/mpl_toolkits/mplot3d/tutorial.html的修改后的副本,该副本最初使用三角测量功能(最终映射到Delaunay?)

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.tri as mtri
from scipy.spatial import Delaunay

# u, v are parameterisation variables
u = np.array([0,0,0.5,1,1]) 
v = np.array([0,1,0.5,0,1]) 

x = u
y = v
z = np.array([0,0,1,0,0])

# Triangulate parameter space to determine the triangles
#tri = mtri.Triangulation(u, v)
tri = Delaunay(np.array([u,v]).T)

print 'polyhedron(faces = ['
#for vert in tri.triangles:
for vert in tri.simplices:
    print '[%d,%d,%d],' % (vert[0],vert[1],vert[2]),
print '], points = ['
for i in range(x.shape[0]):
    print '[%f,%f,%f],' % (x[i], y[i], z[i]),
print ']);'


fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')

# The triangles in parameter space determine which x, y, z points are
# connected by an edge
#ax.plot_trisurf(x, y, z, triangles=tri.triangles, cmap=plt.cm.Spectral)
ax.plot_trisurf(x, y, z, triangles=tri.simplices, cmap=plt.cm.Spectral)


plt.show()
Run Code Online (Sandbox Code Playgroud)

金字塔上面的例子是什么

下面是(稍微更结构化)文本输出:

polyhedron(
    faces = [[2,1,0], [3,2,0], [4,2,3], [2,4,1], ], 

    points = [[0.000000,0.000000,0.000000], 
              [0.000000,1.000000,0.000000], 
              [0.500000,0.500000,1.000000], 
              [1.000000,0.000000,0.000000], 
              [1.000000,1.000000,0.000000], ]);
Run Code Online (Sandbox Code Playgroud)


Jai*_*ime 5

看起来您想计算点云的凸包。我认为这就是你想要做的:

from scipy.spatial import ConvexHull

hull = ConvexHull(points)
indices = hull.simplices
vertices = points[indices]
Run Code Online (Sandbox Code Playgroud)

  • @stealth你将无法使用`scipy.spatial`函数来完成你所询问的事情,因为它基于[qhull](http://www.qhull.org/),它“不支持非凸曲面的三角测量...”。你也许可以将你的点分解成几个凸面。 (3认同)