per*_*ate 10 rdf nlp stanford-nlp nlp-question-answering dependency-parsing
我有兴趣从问题中提取三元组(主语,谓语,宾语).
例如,我想转换以下问题:
谁是美国总统的妻子?
至 :
(x,isWifeOf,y)∧(y,isPresidentof,USA)
x和y是我们必须找到的unknows才能回答问题(/ \表示连接).
我已经阅读了很多关于这个主题的论文,我想使用现有的解析器(如Stanford解析器)来执行此任务.我知道解析器输出2种类型的数据:
一些论文试图从解析结构树中构建三元组(例如,从句子中提取三重提取),但是这种方法似乎太弱而无法处理复杂的问题.
另一方面,依赖树包含许多相关信息以执行三次提取.很多论文声称这样做,但是我没有找到任何明确给出详细程序或算法的论文.大多数时候,作者说他们根据他们没有给出的一些规则来分析产生三元组的依赖关系.
有没有人知道任何有关从问题的依赖树中提取(主题,谓词,对象)的更多信息的论文?
Textacy对三重提取有很好的实现。它构建在SpaCy之上,SpaCy 是 Python 中流行的 NLP 库。您似乎对三元组提取的底层算法特别感兴趣,因此也许研究其算法的源代码可以给您一些启发。请参阅此处:https://textacy.readthedocs.io/en/stable/_modules/textacy/extract.html#subject_verb_object_triples