has*_*uke 12 python plot matplotlib legend
我有数据导致多行被绘制,我想在我的图例中为这些行添加一个标签.我认为使用下面的例子可以更好地证明这一点,
a = np.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
plt.legend(loc='best')
Run Code Online (Sandbox Code Playgroud)
正如您在Out [23]中看到的那样,该情节产生了5条不同的线条.结果情节看起来像这样
有什么方法可以告诉绘图方法避免多个标签?我不想使用自定义图例(您可以同时指定标签和线条形状)尽可能多.
wil*_*ill 10
如果我打算经常这样做,我会亲自制作一个小帮手功能;
from matplotlib import pyplot
import numpy
a = numpy.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
def plotCollection(ax, xs, ys, *args, **kwargs):
ax.plot(xs,ys, *args, **kwargs)
if "label" in kwargs.keys():
#remove duplicates
handles, labels = pyplot.gca().get_legend_handles_labels()
newLabels, newHandles = [], []
for handle, label in zip(handles, labels):
if label not in newLabels:
newLabels.append(label)
newHandles.append(handle)
pyplot.legend(newHandles, newLabels)
ax = pyplot.subplot(1,1,1)
plotCollection(ax, a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
plotCollection(ax, a[:,1::2].T, a[:, ::2].T, 'b', label='data_b')
pyplot.show()
Run Code Online (Sandbox Code Playgroud)
从图例handles
和labels
图例中删除重复项(比您拥有的)更简单(和IMO更清晰)的方法是:
handles, labels = pyplot.gca().get_legend_handles_labels()
newLabels, newHandles = [], []
for handle, label in zip(handles, labels):
if label not in newLabels:
newLabels.append(label)
newHandles.append(handle)
pyplot.legend(newHandles, newLabels)
Run Code Online (Sandbox Code Playgroud)
Numpy解决方案基于上面的will的回应.
import numpy as np
import matplotlib.pylab as plt
a = np.array([[3.57, 1.76, 7.42, 6.52],
[1.57, 1.20, 3.02, 6.88],
[2.23, 4.86, 5.12, 2.81],
[4.48, 1.38, 2.14, 0.86],
[6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
handles, labels = plt.gca().get_legend_handles_labels()
Run Code Online (Sandbox Code Playgroud)
假设相等标签具有相同的句柄,获得唯一标签及其各自的索引,这些索引对应于句柄索引.
labels, ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]
plt.legend(handles, labels, loc='best')
plt.show()
Run Code Online (Sandbox Code Playgroud)
所以在这里使用will的建议和另一个问题,我在这里留下我的补救措施
handles, labels = plt.gca().get_legend_handles_labels()
i =1
while i<len(labels):
if labels[i] in labels[:i]:
del(labels[i])
del(handles[i])
else:
i +=1
plt.legend(handles, labels)
Run Code Online (Sandbox Code Playgroud)
而新的情节看起来像,
Matplotlib给你一个很好的接口线,集合LineCollection.代码很简单
import numpy
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
a = numpy.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
xs = a[:,::2]
ys = a[:, 1::2]
lines = LineCollection([list(zip(x,y)) for x,y in zip(xs, ys)], label='data_a')
f, ax = plt.subplots(1, 1)
ax.add_collection(lines)
ax.legend()
ax.set_xlim([xs.min(), xs.max()]) # have to set manually
ax.set_ylim([ys.min(), ys.max()])
plt.show()
Run Code Online (Sandbox Code Playgroud)
一个低技术的解决方案是进行两次绘图调用。一个绘制您的数据,另一个只绘制句柄:
a = np.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r')
plt.plot([],[], 'r', label='data_a')
plt.legend(loc='best')
Run Code Online (Sandbox Code Playgroud)
结果如下:
归档时间: |
|
查看次数: |
12038 次 |
最近记录: |