Ken*_*ker 144
摘自本页:
"NaN"代表"不是数字".如果浮点运算有一些输入参数导致操作产生一些未定义的结果,则会产生"Nan".例如,0.0除以0.0是算术上未定义的.取负数的平方根也是不确定的.
最小的可运行示例
您必须知道的第一件事是 NaN 的概念是直接在 CPU 硬件上实现的。
所有主要的现代 CPU 似乎都遵循IEEE 754,它指定了浮点格式,而 NaN 只是特殊的浮点值,是该标准的一部分。
因此,这个概念在任何语言中都非常相似,包括直接向 CPU 发出浮点代码的 Java。
在继续之前,您可能需要先阅读我写的以下答案:
现在进行一些 Java 操作。大多数不在核心语言中的感兴趣的函数都存在于其中java.lang.Float。
南爪哇
import java.lang.Float;
import java.lang.Math;
public class Nan {
public static void main(String[] args) {
// Generate some NaNs.
float nan = Float.NaN;
float zero_div_zero = 0.0f / 0.0f;
float sqrt_negative = (float)Math.sqrt(-1.0);
float log_negative = (float)Math.log(-1.0);
float inf_minus_inf = Float.POSITIVE_INFINITY - Float.POSITIVE_INFINITY;
float inf_times_zero = Float.POSITIVE_INFINITY * 0.0f;
float quiet_nan1 = Float.intBitsToFloat(0x7fc00001);
float quiet_nan2 = Float.intBitsToFloat(0x7fc00002);
float signaling_nan1 = Float.intBitsToFloat(0x7fa00001);
float signaling_nan2 = Float.intBitsToFloat(0x7fa00002);
float nan_minus = -nan;
// Generate some infinities.
float positive_inf = Float.POSITIVE_INFINITY;
float negative_inf = Float.NEGATIVE_INFINITY;
float one_div_zero = 1.0f / 0.0f;
float log_zero = (float)Math.log(0.0);
// Double check that they are actually NaNs.
assert Float.isNaN(nan);
assert Float.isNaN(zero_div_zero);
assert Float.isNaN(sqrt_negative);
assert Float.isNaN(inf_minus_inf);
assert Float.isNaN(inf_times_zero);
assert Float.isNaN(quiet_nan1);
assert Float.isNaN(quiet_nan2);
assert Float.isNaN(signaling_nan1);
assert Float.isNaN(signaling_nan2);
assert Float.isNaN(nan_minus);
assert Float.isNaN(log_negative);
// Double check that they are infinities.
assert Float.isInfinite(positive_inf);
assert Float.isInfinite(negative_inf);
assert !Float.isNaN(positive_inf);
assert !Float.isNaN(negative_inf);
assert one_div_zero == positive_inf;
assert log_zero == negative_inf;
// Double check infinities.
// See what they look like.
System.out.printf("nan 0x%08x %f\n", Float.floatToRawIntBits(nan ), nan );
System.out.printf("zero_div_zero 0x%08x %f\n", Float.floatToRawIntBits(zero_div_zero ), zero_div_zero );
System.out.printf("sqrt_negative 0x%08x %f\n", Float.floatToRawIntBits(sqrt_negative ), sqrt_negative );
System.out.printf("log_negative 0x%08x %f\n", Float.floatToRawIntBits(log_negative ), log_negative );
System.out.printf("inf_minus_inf 0x%08x %f\n", Float.floatToRawIntBits(inf_minus_inf ), inf_minus_inf );
System.out.printf("inf_times_zero 0x%08x %f\n", Float.floatToRawIntBits(inf_times_zero), inf_times_zero);
System.out.printf("quiet_nan1 0x%08x %f\n", Float.floatToRawIntBits(quiet_nan1 ), quiet_nan1 );
System.out.printf("quiet_nan2 0x%08x %f\n", Float.floatToRawIntBits(quiet_nan2 ), quiet_nan2 );
System.out.printf("signaling_nan1 0x%08x %f\n", Float.floatToRawIntBits(signaling_nan1), signaling_nan1);
System.out.printf("signaling_nan2 0x%08x %f\n", Float.floatToRawIntBits(signaling_nan2), signaling_nan2);
System.out.printf("nan_minus 0x%08x %f\n", Float.floatToRawIntBits(nan_minus ), nan_minus );
System.out.printf("positive_inf 0x%08x %f\n", Float.floatToRawIntBits(positive_inf ), positive_inf );
System.out.printf("negative_inf 0x%08x %f\n", Float.floatToRawIntBits(negative_inf ), negative_inf );
System.out.printf("one_div_zero 0x%08x %f\n", Float.floatToRawIntBits(one_div_zero ), one_div_zero );
System.out.printf("log_zero 0x%08x %f\n", Float.floatToRawIntBits(log_zero ), log_zero );
// NaN comparisons always fail.
// Therefore, all tests that we will do afterwards will be just isNaN.
assert !(1.0f < nan);
assert !(1.0f == nan);
assert !(1.0f > nan);
assert !(nan == nan);
// NaN propagate through most operations.
assert Float.isNaN(nan + 1.0f);
assert Float.isNaN(1.0f + nan);
assert Float.isNaN(nan + nan);
assert Float.isNaN(nan / 1.0f);
assert Float.isNaN(1.0f / nan);
assert Float.isNaN((float)Math.sqrt((double)nan));
}
}
Run Code Online (Sandbox Code Playgroud)
运行:
javac Nan.java && java -ea Nan
Run Code Online (Sandbox Code Playgroud)
输出:
nan 0x7fc00000 NaN
zero_div_zero 0x7fc00000 NaN
sqrt_negative 0xffc00000 NaN
log_negative 0xffc00000 NaN
inf_minus_inf 0x7fc00000 NaN
inf_times_zero 0x7fc00000 NaN
quiet_nan1 0x7fc00001 NaN
quiet_nan2 0x7fc00002 NaN
signaling_nan1 0x7fa00001 NaN
signaling_nan2 0x7fa00002 NaN
nan_minus 0xffc00000 NaN
positive_inf 0x7f800000 Infinity
negative_inf 0xff800000 -Infinity
one_div_zero 0x7f800000 Infinity
log_zero 0xff800000 -Infinity
Run Code Online (Sandbox Code Playgroud)
所以从中我们学到了一些东西:
没有任何合理结果的奇怪浮动操作给 NaN:
0.0f / 0.0fsqrt(-1.0f)log(-1.0f)生成一个NaN.
在 C 中,实际上可以请求在此类操作上引发信号以feenableexcept检测它们,但我认为它没有在 Java 中公开:为什么整数除以零 1/0 给出错误但浮点数为 1/0.0返回“Inf”?
然而,在正负无穷大极限上的奇怪运算确实给出了 +- 无穷大而不是 NaN
1.0f / 0.0flog(0.0f)0.0 几乎属于这一类,但问题可能在于它可以达到正无穷大或负无穷大,因此它被保留为 NaN。
如果 NaN 是浮点运算的输入,则输出也趋向于 NaN
NaN 0x7fc00000, 0x7fc00001,有几个可能的值0x7fc00002,尽管 x86_64 似乎只生成0x7fc00000.
NaN 和无穷大具有相似的二进制表示。
让我们分解其中的一些:
nan = 0x7fc00000 = 0 11111111 10000000000000000000000
positive_inf = 0x7f800000 = 0 11111111 00000000000000000000000
negative_inf = 0xff800000 = 1 11111111 00000000000000000000000
| | |
| | mantissa
| exponent
|
sign
Run Code Online (Sandbox Code Playgroud)
由此我们确认 IEEE754 规定的内容:
NaN 可以是正数或负数(最高位),尽管这对正常操作没有影响
在 Ubuntu 18.10 amd64、OpenJDK 1.8.0_191 中测试。
小智 5
NaN代表Not a Number.它用于表示数学上未定义的任何值.比如将0.0除以0.0.您可以在此处查看更多信息:https://web.archive.org/web/20120819091816/http : //www.concentric.net/~ttwang/tech/javafloat.htm
如果您需要更多帮助,请在此处发布您的计划