Cli*_*ton 11 haskell ghc fold higher-order-functions
我如何编写一个函数,它接受一个类型的函数元组,ai -> b -> ai
并返回一个函数,该函数接受类型元素的元组,类型的ai
一个元素b
,并将每个元素组合成一个新的元组ai
:
那就是签名应该是这样的
f :: (a1 -> b -> a1, a2 -> b -> a2, ... , an -> b -> an) ->
(a1, a2, ... , an) ->
b ->
(a1, a2, ... , an)
Run Code Online (Sandbox Code Playgroud)
这样:
f (min, max, (+), (*)) (1,2,3,4) 5 = (1, 5, 8, 20)
Run Code Online (Sandbox Code Playgroud)
关键是我可以写:
foldlMult' t = foldl' (f t)
Run Code Online (Sandbox Code Playgroud)
然后做一些像:
foldlMult' (min, max, (+), (*)) (head x, head x, 0, 0) x
Run Code Online (Sandbox Code Playgroud)
一次通过多次折叠.GHC扩展是可以的.
Lui*_*las 11
如果我理解你的例子是正确的,那么这些类型ai -> b -> ai
不是ai -> b -> a
你第一次写的.让我们重写类型a -> ri -> ri
,只是因为它有助于我思考.
首先要注意的是这种对应关系:
(a -> r1 -> r1, ..., a -> rn -> rn) ~ a -> (r1 -> r1, ..., rn -> rn)
Run Code Online (Sandbox Code Playgroud)
这允许您编写这两个函数,它们是反转的:
pullArg :: (a -> r1 -> r1, a -> r2 -> r2) -> a -> (r1 -> r1, r2 -> r2)
pullArg (f, g) = \a -> (f a, g a)
pushArg :: (a -> (r1 -> r1, r2 -> r2)) -> (a -> r1 -> r1, a -> r2 -> r2)
pushArg f = (\a -> fst (f a), \a -> snd (f a))
Run Code Online (Sandbox Code Playgroud)
第二个观察:形式的类型ri -> ri
有时被称为内同胚,并且这些类型中的每一个都具有作为关联操作的组合的monoid和作为标识的标识函数.该Data.Monoid
包装具有此包装为:
newtype Endo a = Endo { appEndo :: a -> a }
instance Monoid (Endo a) where
mempty = id
mappend = (.)
Run Code Online (Sandbox Code Playgroud)
这允许您重写前面的内容pullArg
:
pullArg :: (a -> r1 -> r1, a -> r2 -> r2) -> a -> (Endo r1, Endo r2)
pullArg (f, g) = \a -> (Endo $ f a, Endo $ g a)
Run Code Online (Sandbox Code Playgroud)
第三个观察:两个幺半群的乘积也是一个幺半群,根据这个例子也来自Data.Monoid
:
instance (Monoid a, Monoid b) => Monoid (a, b) where
mempty = (mempty, mempty)
(a, b) `mappend` (c, d) = (a `mappend` c, b `mappend d)
Run Code Online (Sandbox Code Playgroud)
同样,对于任何数量的参数的元组.
第四个观察:什么是褶皱? 答案:褶皱是由幺半群组成的!
import Data.Monoid
fold :: Monoid m => (a -> m) -> [a] -> m
fold f = mconcat . map f
Run Code Online (Sandbox Code Playgroud)
这fold
只是foldMap
from的一个特化Data.Foldable
,所以实际上我们不需要定义它,我们可以只导入它更通用的版本:
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m
Run Code Online (Sandbox Code Playgroud)
如果你fold
有Endo
,那就像从右边折叠一样.要从左侧折叠,您需要使用Dual (Endo r)
幺半群折叠:
myfoldl :: (a -> Dual (Endo r)) -> r -> -> [a] -> r
myfoldl f z xs = appEndo (getDual (fold f xs)) z
-- From `Data.Monoid`. This just flips the order of `mappend`.
newtype Dual m = Dual { getDual :: m }
instance Monoid m => Monoid (Dual m) where
mempty = Dual mempty
Dual a `mappend` Dual b = Dual $ b `mappend` a
Run Code Online (Sandbox Code Playgroud)
记住我们的pullArg
功能?让我们再修改一下,因为你是从左边折叠的:
pullArg :: (a -> r1 -> r1, a -> r2 -> r2) -> a -> Dual (Endo r1, Endo r2)
pullArg (f, g) = \a -> Dual (Endo $ f a, Endo $ g a)
Run Code Online (Sandbox Code Playgroud)
我声称,这是你的2元组版本f
,或至少与它同构.您可以将折叠函数重构为表单a -> Endo ri
,然后执行:
let (f'1, ..., f'n) = foldMap (pullArgn f1 ... fn) xs
in (f'1 z1, ..., f'n zn)
Run Code Online (Sandbox Code Playgroud)
另外值得一看:可组合流媒体折叠,这是对这些想法的进一步阐述.
对于直接的方法,你可以定义的等价物Control.Arrow
的(***)
和(&&&)
明确的,每个N
(例如N == 4
):
prod4 (f1,f2,f3,f4) (x1,x2,x3,x4) = (f1 x1,f2 x2,f3 x3,f4 x4) -- cf (***)
call4 (f1,f2,f3,f4) x = (f1 x, f2 x, f3 x, f4 x ) -- cf (&&&)
uncurry4 f (x1,x2,x3,x4) = f x1 x2 x3 x4
Run Code Online (Sandbox Code Playgroud)
然后,
foldr4 :: (b -> a1 -> a1, b -> a2 -> a2,
b -> a3 -> a3, b -> a4 -> a4)
-> (a1, a2, a3, a4) -> [b]
-> (a1, a2, a3, a4) -- (f .: g) x y = f (g x y)
foldr4 t z xs = foldr (prod4 . call4 t) z xs -- foldr . (prod4 .: call4)
-- f x1 (f x2 (... (f xn z) ...)) -- foldr . (($) .: ($))
Run Code Online (Sandbox Code Playgroud)
因此,元组中的元组功能foldr4
是您想要的翻转版本.测试:
Prelude> g xs = foldr4(min,max,(+),(*))(head xs,head xs,0,1)xs
Prelude> g [1..5]
(1,5,15,120)
foldl4'
是一个调整.以来
foldr f z xs == foldl (\k x r-> k (f x r)) id xs z
foldl f z xs == foldr (\x k a-> k (f a x)) id xs z
Run Code Online (Sandbox Code Playgroud)
我们有
foldl4, foldl4' :: (t -> a -> t, t1 -> a -> t1,
t2 -> a -> t2, t3 -> a -> t3)
-> (t, t1, t2, t3) -> [a]
-> (t, t1, t2, t3)
foldl4 t z xs = foldr (\x k a-> k (call4 (prod4 t a) x))
(prod4 (id,id,id,id)) xs z
foldl4' t z xs = foldr (\x k a-> k (call4 (prod4' t a) x))
(prod4 (id,id,id,id)) xs z
prod4' (f1,f2,f3,f4) (x1,x2,x3,x4) = (f1 $! x1,f2 $! x2,f3 $! x3,f4 $! x4)
Run Code Online (Sandbox Code Playgroud)
对于元组的功能,我们甚至可以获得你想要的类型.
prod4
必须使用更严格的版本来尽早强制论证foldl4'
.
归档时间: |
|
查看次数: |
331 次 |
最近记录: |