Jas*_*n S 8 python numpy scipy python-2.7
我正在尝试计算numpy数组中的唯一值.
import numpy as np
from collections import defaultdict
import scipy.stats
import time
x = np.tile([1,2,3,4,5,6,7,8,9,10],20000)
for i in [44,22,300,403,777,1009,800]:
x[i] = 11
def getCounts(x):
counts = defaultdict(int)
for item in x:
counts[item] += 1
return counts
flist = [getCounts, scipy.stats.itemfreq]
for f in flist:
print f
t1 = time.time()
y = f(x)
t2 = time.time()
print y
print '%.5f sec' % (t2-t1)
Run Code Online (Sandbox Code Playgroud)
我起初找不到内置函数,所以我写道getCounts(); 然后我发现我scipy.stats.itemfreq以为我会用它来代替.但它很慢!这是我在电脑上得到的.与这么简单的手写功能相比,为什么这么慢?
<function getCounts at 0x0000000013C78438>
defaultdict(<type 'int'>, {1: 19998, 2: 20000, 3: 19999, 4: 19999, 5: 19999, 6: 20000, 7: 20000, 8: 19999, 9: 20000, 10: 19999, 11: 7})
0.04700 sec
<function itemfreq at 0x0000000013C5D208>
[[ 1.00000000e+00 1.99980000e+04]
[ 2.00000000e+00 2.00000000e+04]
[ 3.00000000e+00 1.99990000e+04]
[ 4.00000000e+00 1.99990000e+04]
[ 5.00000000e+00 1.99990000e+04]
[ 6.00000000e+00 2.00000000e+04]
[ 7.00000000e+00 2.00000000e+04]
[ 8.00000000e+00 1.99990000e+04]
[ 9.00000000e+00 2.00000000e+04]
[ 1.00000000e+01 1.99990000e+04]
[ 1.10000000e+01 7.00000000e+00]]
2.04100 sec
Run Code Online (Sandbox Code Playgroud)
War*_*ser 19
如果你可以使用numpy 1.9,你可以使用numpy.unique参数return_counts=True.即
unique_items, counts = np.unique(x, return_counts=True)
Run Code Online (Sandbox Code Playgroud)
事实上,itemfreq更新后使用np.unique,但scipy目前支持numpy版本回1.5,所以它不使用return_counts参数.
这是itemfreqscipy 0.14 的完整实现:
def itemfreq(a):
items, inv = np.unique(a, return_inverse=True)
freq = np.bincount(inv)
return np.array([items, freq]).T
Run Code Online (Sandbox Code Playgroud)