我正在尝试在R中使用wilcox检验来确定两个未配对的数据集之间是否存在显着差异,如下所示。我知道下面的数据是正态分布的,但是我的原始数据不是正态分布的。
set.seed(1)
x1 <- rnorm(10, 4, 1)
x2 <- rnorm(10, 7, 1)
wilcox.test(x1, x2)
Wilcoxon rank sum test
data: x1 and x2
W = 1, p-value = 2.165e-05
alternative hypothesis: true location shift is not equal to 0
Run Code Online (Sandbox Code Playgroud)
我也尝试了下面的代码,但给出了错误报告
wilcox.test(x1 ~ x2)
Error in wilcox.test.formula(x1 ~ x2) :
grouping factor must have exactly 2 levels
Run Code Online (Sandbox Code Playgroud)
我的问题是-这是处理此数据的正确方法吗?-我认为它正在进行秩和检验-这就是我应该得到的。p值表明两个数据集之间存在显着差异。
以下使用相同的数据演示了公式在wilcox.test中的使用:
> dd = data.frame(x1,x2)
> library(reshape2)
> melt(dd)
No id variables; using all as measure variables
variable value
1 x1 3.373546
2 x1 4.183643
3 x1 3.164371
4 x1 5.595281
5 x1 4.329508
6 x1 3.179532
7 x1 4.487429
8 x1 4.738325
9 x1 4.575781
10 x1 3.694612
11 x2 8.511781
12 x2 7.389843
13 x2 6.378759
14 x2 4.785300
15 x2 8.124931
16 x2 6.955066
17 x2 6.983810
18 x2 7.943836
19 x2 7.821221
20 x2 7.593901
> with(melt(dd), wilcox.test(value~variable))
No id variables; using all as measure variables
Wilcoxon rank sum test
data: value by variable
W = 1, p-value = 2.165e-05
alternative hypothesis: true location shift is not equal to 0
Run Code Online (Sandbox Code Playgroud)
结果与wilcox.test(x1,x2)相同
> wilcox.test(x1,x2)
Wilcoxon rank sum test
data: x1 and x2
W = 1, p-value = 2.165e-05
alternative hypothesis: true location shift is not equal to 0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2075 次 |
| 最近记录: |