此示例(来自Networkx的手册http://networkx.github.io/documentation/latest/examples/advanced/eigenvalues.html):
#!/usr/bin/env python
"""
Create an G{n,m} random graph and compute the eigenvalues.
Requires numpy or LinearAlgebra package from Numeric Python.
Uses optional pylab plotting to produce histogram of eigenvalues.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
__credits__ = """"""
# Copyright (C) 2004-2006 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
from networkx import *
try:
import numpy.linalg
eigenvalues=numpy.linalg.eigvals
except ImportError:
raise ImportError("numpy can not be imported.")
try:
from pylab import *
except:
pass
n=1000 # 1000 nodes
m=5000 # 5000 edges
G=gnm_random_graph(n,m)
L=generalized_laplacian(G)
e=eigenvalues(L)
print("Largest eigenvalue:", max(e))
print("Smallest eigenvalue:", min(e))
# plot with matplotlib if we have it
# shows "semicircle" distribution of eigenvalues
try:
hist(e,bins=100) # histogram with 100 bins
xlim(0,2) # eigenvalues between 0 and 2
show()
except:
pass
Run Code Online (Sandbox Code Playgroud)
使用networkx的最新版本引发以下错误:
Traceback (most recent call last):
File "Untitled 2.py", line 36, in <module>
L=generalized_laplacian(G)
NameError: name 'generalized_laplacian' is not defined
Run Code Online (Sandbox Code Playgroud)
我该怎么去才能让它发挥作用?
这个例子肯定会被更新版本的NetworkX打破.这是一个有效的:
import networkx as nx
import numpy.linalg
import matplotlib.pyplot as plt
n = 1000 # 1000 nodes
m = 5000 # 5000 edges
G = nx.gnm_random_graph(n,m)
L = nx.normalized_laplacian_matrix(G)
e = numpy.linalg.eigvals(L.A)
print("Largest eigenvalue:", max(e))
print("Smallest eigenvalue:", min(e))
plt.hist(e,bins=100) # histogram with 100 bins
plt.xlim(0,2) # eigenvalues between 0 and 2
plt.show()
Run Code Online (Sandbox Code Playgroud)