Bra*_*ram 9 language-agnostic algorithm dynamic-programming code-complexity
我的朋友在接受采访时遇到了一个问题,他被告知有一个O(n)解决方案.但是,我们都不能想到它.这是一个问题:
有一个字符串,它包含just,(并)找到最长有效括号子串的长度,它应该很好地形成.
例如")()())",最长的有效括号是()(),长度是4.
我用动态编程想出来了,但它不是O(n).有任何想法吗?
public int getLongestLen(String s) {
if (s == null || s.length() == 0)
return 0;
int len = s.length(), maxLen = 0;
boolean[][] isValid = new boolean[len][len];
for (int l = 2; l < len; l *= 2)
for (int start = 0; start <= len - l; start++) {
if ((s.charAt(start) == '(' && s.charAt(start + l - 1) == ')') &&
(l == 2 || isValid[start+1][start+l-2])) {
isValid[start][start+l-1] = true;
maxLen = Math.max(maxLen, l);
}
}
return maxLen;
}
Run Code Online (Sandbox Code Playgroud)
Dav*_*vid 18
我以前做过这个问题,在压力下提出O(n)解决方案并不容易.这是它,用堆栈解决.
private int getLongestLenByStack(String s) {
//use last to store the last matched index
int len = s.length(), maxLen = 0, last = -1;
if (len == 0 || len == 1)
return 0;
//use this stack to store the index of '('
Stack<Integer> stack = new Stack<Integer>();
for (int i = 0; i < len; i++) {
if (s.charAt(i) == '(')
stack.push(i);
else {
//if stack is empty, it means that we already found a complete valid combo
//update the last index.
if (stack.isEmpty()) {
last = i;
} else {
stack.pop();
//found a complete valid combo and calculate max length
if (stack.isEmpty())
maxLen = Math.max(maxLen, i - last);
else
//calculate current max length
maxLen = Math.max(maxLen, i - stack.peek());
}
}
}
return maxLen;
}
Run Code Online (Sandbox Code Playgroud)