收集多组列

And*_*rew 97 r reshape dplyr qualtrics tidyr

我有来自在线调查的数据,受访者经历了1-3次问题循环.调查软件(Qualtrics)记录在多列,也就是说这个数据,Q3.2的调查将在列Q3.2.1.,Q3.2.2.以及Q3.2.3.:

df <- data.frame(
  id = 1:10,
  time = as.Date('2009-01-01') + 0:9,
  Q3.2.1. = rnorm(10, 0, 1),
  Q3.2.2. = rnorm(10, 0, 1),
  Q3.2.3. = rnorm(10, 0, 1),
  Q3.3.1. = rnorm(10, 0, 1),
  Q3.3.2. = rnorm(10, 0, 1),
  Q3.3.3. = rnorm(10, 0, 1)
)

# Sample data

   id       time    Q3.2.1.     Q3.2.2.    Q3.2.3.     Q3.3.1.    Q3.3.2.     Q3.3.3.
1   1 2009-01-01 -0.2059165 -0.29177677 -0.7107192  1.52718069 -0.4484351 -1.21550600
2   2 2009-01-02 -0.1981136 -1.19813815  1.1750200 -0.40380049 -1.8376094  1.03588482
3   3 2009-01-03  0.3514795 -0.27425539  1.1171712 -1.02641801 -2.0646661 -0.35353058
...
Run Code Online (Sandbox Code Playgroud)

我想将所有QN.N*列合并到整齐的单个QN.N列中,最终得到如下结果:

   id       time loop_number        Q3.2        Q3.3
1   1 2009-01-01           1 -0.20591649  1.52718069
2   2 2009-01-02           1 -0.19811357 -0.40380049
3   3 2009-01-03           1  0.35147949 -1.02641801
...
11  1 2009-01-01           2 -0.29177677  -0.4484351
12  2 2009-01-02           2 -1.19813815  -1.8376094
13  3 2009-01-03           2 -0.27425539  -2.0646661
...
21  1 2009-01-01           3 -0.71071921 -1.21550600
22  2 2009-01-02           3  1.17501999  1.03588482
23  3 2009-01-03           3  1.11717121 -0.35353058
...
Run Code Online (Sandbox Code Playgroud)

tidyr库具有该gather()功能,适用于组合组列:

library(dplyr)
library(tidyr)
library(stringr)

df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>% 
  mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
  select(id, time, loop_number, Q3.2)


   id       time loop_number        Q3.2
1   1 2009-01-01           1 -0.20591649
2   2 2009-01-02           1 -0.19811357
3   3 2009-01-03           1  0.35147949
...
29  9 2009-01-09           3 -0.58581232
30 10 2009-01-10           3 -2.33393981
Run Code Online (Sandbox Code Playgroud)

结果数据帧有30行,如预期的那样(10个个体,每个3个循环).然而,收集列的第二组不工作正确,它成功地使两者结合的列Q3.2Q3.3,但具有90行而不是30(10个人,Q3.2的3个循环,和Q3的3个环的所有组合结束了.3;对于实际数据中的每组列,组合将显着增加):

df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>% 
  gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
  mutate(loop_number = str_sub(loop_number,-2,-2))


   id       time loop_number        Q3.2        Q3.3
1   1 2009-01-01           1 -0.20591649  1.52718069
2   2 2009-01-02           1 -0.19811357 -0.40380049
3   3 2009-01-03           1  0.35147949 -1.02641801
...
89  9 2009-01-09           3 -0.58581232 -0.13187024
90 10 2009-01-10           3 -2.33393981 -0.48502131
Run Code Online (Sandbox Code Playgroud)

有没有办法使用多个这样的调用,gather()在保持正确的行数的同时组合这样的小子集?

had*_*ley 131

这种方法对我来说很自然:

df %>%
  gather(key, value, -id, -time) %>%
  extract(key, c("question", "loop_number"), "(Q.\\..)\\.(.)") %>%
  spread(question, value)
Run Code Online (Sandbox Code Playgroud)

首先收集所有的问题列,使用extract()分离成questionloop_number,然后spread()质疑放回列.

#>    id       time loop_number         Q3.2        Q3.3
#> 1   1 2009-01-01           1  0.142259203 -0.35842736
#> 2   1 2009-01-01           2  0.061034802  0.79354061
#> 3   1 2009-01-01           3 -0.525686204 -0.67456611
#> 4   2 2009-01-02           1 -1.044461185 -1.19662936
#> 5   2 2009-01-02           2  0.393808163  0.42384717
Run Code Online (Sandbox Code Playgroud)

  • 你好。我有许多名称以1和2结尾的列,例如age1,age2,weight1,weight2,blood1,blood2...。我将如何在此处应用您的方法? (5认同)
  • 这部分是什么意思:“(Q。\\ ..)\\。(。)”我要搜索什么才能解码那里发生的事情? (4认同)
  • @mob正则表达式 (3认同)
  • @mob "(Q.\\..)\\.(.)" 是一个带有括号的正则表达式,它定义了要提取到“question”和“loop_number”中的正则表达式组。更具体地说,在此示例中,键中带有表达式“Q.\\..”的项目进入“问题”列(即“Q3.2”和“Q3.3”),然后是下一个之后的部分句点(表示为“.”)进入“loop_number”列。 (3认同)

akr*_*run 31

这可以使用reshape.虽然有可能dplyr.

  colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))
  colnames(df)[2] <- "Date"
  res <- reshape(df, idvar=c("id", "Date"), varying=3:8, direction="long", sep="_")
  row.names(res) <- 1:nrow(res)

   head(res)
  #  id       Date time       Q3.2       Q3.3
  #1  1 2009-01-01    1  1.3709584  0.4554501
  #2  2 2009-01-02    1 -0.5646982  0.7048373
  #3  3 2009-01-03    1  0.3631284  1.0351035
  #4  4 2009-01-04    1  0.6328626 -0.6089264
  #5  5 2009-01-05    1  0.4042683  0.5049551
  #6  6 2009-01-06    1 -0.1061245 -1.7170087
Run Code Online (Sandbox Code Playgroud)

或使用 dplyr

  library(tidyr)
  library(dplyr)
  colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))

  df %>%
     gather(loop_number, "Q3", starts_with("Q3")) %>% 
     separate(loop_number,c("L1", "L2"), sep="_") %>% 
     spread(L1, Q3) %>%
     select(-L2) %>%
     head()
  #  id       time       Q3.2       Q3.3
  #1  1 2009-01-01  1.3709584  0.4554501
  #2  1 2009-01-01  1.3048697  0.2059986
  #3  1 2009-01-01 -0.3066386  0.3219253
  #4  2 2009-01-02 -0.5646982  0.7048373
  #5  2 2009-01-02  2.2866454 -0.3610573
  #6  2 2009-01-02 -1.7813084 -0.7838389
Run Code Online (Sandbox Code Playgroud)

  • 我一直无法理解 `reshape()` 函数,请参阅我的解决方案,了解在我看来是一个非常干净的 tidyr 实现。 (2认同)
  • `tidyr::pivot_longer`:现在不仅在开发版本中:) (2认同)

Aru*_*run 21

随着最近的更新melt.data.table,我们现在可以融化多个列.有了它,我们可以做到:

require(data.table) ## 1.9.5
melt(setDT(df), id=1:2, measure=patterns("^Q3.2", "^Q3.3"), 
     value.name=c("Q3.2", "Q3.3"), variable.name="loop_number")
 #    id       time loop_number         Q3.2        Q3.3
 # 1:  1 2009-01-01           1 -0.433978480  0.41227209
 # 2:  2 2009-01-02           1 -0.567995351  0.30701144
 # 3:  3 2009-01-03           1 -0.092041353 -0.96024077
 # 4:  4 2009-01-04           1  1.137433487  0.60603396
 # 5:  5 2009-01-05           1 -1.071498263 -0.01655584
 # 6:  6 2009-01-06           1 -0.048376809  0.55889996
 # 7:  7 2009-01-07           1 -0.007312176  0.69872938
Run Code Online (Sandbox Code Playgroud)

您可以从这里获得开发版本.


A5C*_*2T1 10

它与"tidyr"和"dplyr"完全没有关系,但这是另一个需要考虑的选择:merged.stack我的"splitstackshape"包,V1.4.0及更高版本开始.

library(splitstackshape)
merged.stack(df, id.vars = c("id", "time"), 
             var.stubs = c("Q3.2.", "Q3.3."),
             sep = "var.stubs")
#     id       time .time_1       Q3.2.       Q3.3.
#  1:  1 2009-01-01      1. -0.62645381  1.35867955
#  2:  1 2009-01-01      2.  1.51178117 -0.16452360
#  3:  1 2009-01-01      3.  0.91897737  0.39810588
#  4:  2 2009-01-02      1.  0.18364332 -0.10278773
#  5:  2 2009-01-02      2.  0.38984324 -0.25336168
#  6:  2 2009-01-02      3.  0.78213630 -0.61202639
#  7:  3 2009-01-03      1. -0.83562861  0.38767161
# <<:::SNIP:::>>
# 24:  8 2009-01-08      3. -1.47075238 -1.04413463
# 25:  9 2009-01-09      1.  0.57578135  1.10002537
# 26:  9 2009-01-09      2.  0.82122120 -0.11234621
# 27:  9 2009-01-09      3. -0.47815006  0.56971963
# 28: 10 2009-01-10      1. -0.30538839  0.76317575
# 29: 10 2009-01-10      2.  0.59390132  0.88110773
# 30: 10 2009-01-10      3.  0.41794156 -0.13505460
#     id       time .time_1       Q3.2.       Q3.3.
Run Code Online (Sandbox Code Playgroud)


Ale*_*lex 6

如果你像我一样,并且无法弄清楚如何使用"捕获组的正则表达式" extract,下面的代码复制了extract(...)Hadleys答案中的那一行:

df %>% 
    gather(question_number, value, starts_with("Q3.")) %>%
    mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>%
    select(id, time, loop_number, question_number, value) %>% 
    spread(key = question_number, value = value)
Run Code Online (Sandbox Code Playgroud)

这里的问题是初始聚集形成一个关键列,实际上是两个键的组合.我选择mutate在注释中使用我的原始解决方案将此列拆分为两列,其中包含等效信息,loop_number列和question_number列.spread然后可以用于转换长格式数据,这是(question_number, value)宽格式数据的键值对.