Ole*_*leg 5 average r data-visualization ggplot2
我是R的新手,无法运行功能来获得我需要的答案.我有示例数据PCSTest
看起来像这样:
Date Site Word
--------------------------------------
9/1/2012 slashdot javascript
9/1/2012 stackexchange R
9/1/2012 reddit R
9/1/2012 slashdot javascript
9/1/2012 stackexchange javascript
9/5/2012 reddit R
9/8/2012 slashdot javascript
9/8/2012 stackexchange R
9/8/2012 reddit R
9/8/2012 slashdot javascript
9/18/2012 stackexchange R
9/18/2012 reddit R
9/18/2012 slashdot javascript
9/18/2012 stackexchange R
9/27/2012 reddit R
9/27/2012 slashdot R
Run Code Online (Sandbox Code Playgroud)
我的目标是随着时间的推移寻找与网站相关的不同单词出现的趋势.我可以算一下:
library(plyr)
PCSTest <- read.csv(file="c:/PCS/PCS Data - Test.csv", header=TRUE)
PCSTest$Date <- as.Date(PCSTest$Date, "%m/%d/%Y")
PCSTest$Date <- as.POSIXct(PCSTest$Date)
countTest <- count(PCSTest, c("Date", "Site", "Word"))
Run Code Online (Sandbox Code Playgroud)
这给了这个:
Date Site Word freq
1 2012-08-31 20:00:00 reddit R 4
2 2012-08-31 20:00:00 slashdot javascript 7
3 2012-08-31 20:00:00 stackexchange javascript 1
4 2012-08-31 20:00:00 stackexchange R 2
5 2012-09-01 20:00:00 reddit javascript 2
6 2012-09-01 20:00:00 slashdot R 3
7 2012-09-04 20:00:00 reddit R 1
8 2012-09-07 20:00:00 reddit R 1
9 2012-09-07 20:00:00 slashdot javascript 2
10 2012-09-07 20:00:00 stackexchange R 1
11 2012-09-09 20:00:00 stackexchange javascript 4
12 2012-09-10 20:00:00 slashdot R 4
13 2012-09-14 20:00:00 reddit javascript 4
14 2012-09-17 20:00:00 reddit R 4
15 2012-09-17 20:00:00 slashdot javascript 1
16 2012-09-17 20:00:00 stackexchange R 2
17 2012-09-19 20:00:00 reddit javascript 2
18 2012-09-23 20:00:00 stackexchange javascript 2
19 2012-09-24 20:00:00 reddit javascript 3
20 2012-09-24 20:00:00 stackexchange javascript 1
21 2012-09-24 20:00:00 stackexchange R 4
22 2012-09-25 20:00:00 reddit javascript 5
23 2012-09-25 20:00:00 slashdot javascript 3
24 2012-09-25 20:00:00 stackexchange R 7
25 2012-09-26 20:00:00 reddit R 1
26 2012-09-26 20:00:00 slashdot R 5
Run Code Online (Sandbox Code Playgroud)
或将它们全部绘制成:
library(ggplot2)
ggplot(data=countTest, aes(x=Date, y=freq, group=interaction(Site, Word), colour=interaction(Site, Word), shape=Site)) + geom_line() + geom_point()
Run Code Online (Sandbox Code Playgroud)

我现在需要对数据进行一些计算,所以我尝试了聚合
aggregate(freq ~ Site + Word, data = countTest, function(freq) cbind(mean(freq), max(freq)))[order(-agg$freq[,3]),]
Run Code Online (Sandbox Code Playgroud)
这使:
Site Word freq.1 freq.2
2 slashdot javascript 3.25 7.00
5 slashdot R 4.00 5.00
1 reddit javascript 3.20 5.00
4 reddit R 2.20 4.00
6 stackexchange R 3.20 7.00
3 stackexchange javascript 2.00 4.00
Run Code Online (Sandbox Code Playgroud)
在最后一个结果中我想要的是一个具有每天平均频率的列,例如...... sum(freq)/ 20天,根据数据计算,甚至可能是移动平均值.另外,我想要另一个具有斜率/线性回归的列.我如何计算聚合函数?
或者,我如何更好/更快地做出这些?我知道有apply和data.table函数,但我不知道如何使用它们.任何帮助将不胜感激!
我不确定你到底想做什么,但是dplyr(或plyr) 会帮助你。这是示例。如果你明确说出你想要什么,你会得到更多帮助。
d <- read.csv("~/Downloads/r_data.txt")
d$Date <- as.POSIXct(as.Date(d$Date, "%m/%d/%Y"))
library(dplyr)
d.cnt <- d %>% group_by(Date, Site, Word) %>% summarise(cnt = n())
# average per day
date.range <- d$Date %>% range %>% diff %>% as.numeric # gives 26 days or
date.range <- d$Date %>% unique %>% length # gives 13 days
d.ave <- d.cnt %>% group_by(Site, Word) %>% summarize(ave_per_day = sum(cnt)/date.range)
# slope
d.reg <- d.cnt %>% group_by(Site, Word) %>%
do({fit = lm(cnt ~ Date, data = .); data.frame(int = coef(fit)[1], slope = coef(fit)[2])})
# plot the slope value
library(ggplot2)
ggplot(d.reg, aes(Site, slope, fill = Word)) + geom_bar(stat = "identity", position = "dodge")
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
364 次 |
| 最近记录: |