Don*_*beo 61 python r frequency
我有一份清单
[[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
Run Code Online (Sandbox Code Playgroud)
我想计算这个列表中每个元素的频率.就像是
freq[[12,6]] = 40
Run Code Online (Sandbox Code Playgroud)
在R中,这可以通过该table
函数获得.python3中有类似的东西吗?
小智 131
Pandas有一个内置的函数叫做value_counts()
.
示例:如果您的DataFrame有一个值为0和1的列,并且您想要计算每个列的总频率,那么只需使用:
df.colName.value_counts()
Run Code Online (Sandbox Code Playgroud)
Bri*_*ius 34
库中的Counter
对象collections
将起到这样的作用.
from collections import Counter
x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
# Since the elements passed to a `Counter` must be hashable, we have to change the lists to tuples.
x = [tuple(element) for element in x]
freq = Counter(x)
print freq[(12,6)]
# Result: 28
Run Code Online (Sandbox Code Playgroud)
and*_*abs 26
import pandas
x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
ps = pandas.Series([tuple(i) for i in x])
counts = ps.value_counts()
print counts
Run Code Online (Sandbox Code Playgroud)
你会得到如下结果:
(12, 0) 33
(12, 6) 28
(6, 0) 20
(0, 6) 19
Run Code Online (Sandbox Code Playgroud)
并且在[(12,6)]
这里您将得到确切的数字28
更多关于pandas
,这是功能强大的Python数据分析工具包,您可以在官方文档中阅读:http://pandas.pydata.org/pandas-docs/stable/
更新:
如果顺序无关紧要,只需使用sorted:
ps = pandas.Series([tuple(sorted(i)) for i in x])
之后的结果是:
(0, 6) 39
(0, 12) 33
(6, 12) 28
Run Code Online (Sandbox Code Playgroud)
tho*_*olf 18
假设您需要将数据转换为pandas DataFrame,以便您拥有
L = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
df = pd.DataFrame(L, columns=('a', 'b'))
Run Code Online (Sandbox Code Playgroud)
然后你可以按照这个答案中的建议做,使用groupby.size()
:
tab = df.groupby(['a', 'b']).size()
Run Code Online (Sandbox Code Playgroud)
tab
看起来如下:
In [5]: tab
Out[5]:
a b
0 6 19
6 0 20
12 0 33
6 28
dtype: int64
Run Code Online (Sandbox Code Playgroud)
并且可以轻松地更改为表格形式unstack()
:
In [6]: tab.unstack()
Out[6]:
b 0 6
a
0 NaN 19.0
6 20.0 NaN
12 33.0 28.0
Run Code Online (Sandbox Code Playgroud)
恕我直言,熊猫提供了这种“制表”问题的一个更好的解决方案:
一维:
my_tab = pd.crosstab(index = df["feature_you_r_interested_in"],
columns="count")
Run Code Online (Sandbox Code Playgroud)
比例计数:
my_tab/my_tab.sum()
Run Code Online (Sandbox Code Playgroud)
二维(总计):
cross = pd.crosstab(index=df["feat1"],
columns=df["feat2"],
margins=True)
cross
Run Code Online (Sandbox Code Playgroud)
另外,正如其他同事所提到的那样,pandas value_counts方法可能就是您所需要的。太好了,可以根据需要将计数作为百分比:
df['your feature'].value_counts(normalize=True)
Run Code Online (Sandbox Code Playgroud)
我非常感谢这个博客:
http://hamelg.blogspot.com.br/2015/11/python-for-data-analysis-part-19_17.html
在 Numpy 中,我发现这样做的最好方法是使用unique
,例如:
import numpy as np
# OPs data
arr = np.array([[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]])
values, counts = np.unique(arr, axis=0, return_counts=True)
# into a dict for presentation
{tuple(a):b for a,b in zip(values, counts)}
Run Code Online (Sandbox Code Playgroud)
给我:{(0, 6): 19, (6, 0): 20, (12, 0): 33, (12, 6): 28}
这与其他答案相匹配
这个例子比我通常看到的要复杂一些,因此需要这个axis=0
选项,如果你只是想要到处都是唯一的值,你可能会错过:
# generate random values
x = np.random.negative_binomial(10, 10/(6+10), 100000)
# get table
values, counts = np.unique(x, return_counts=True)
# plot
import matplotlib.pyplot as plt
plt.vlines(values, 0, counts, lw=2)
Run Code Online (Sandbox Code Playgroud)
R 似乎让这种事情变得更方便了!上面的 Python 代码只是plot(table(rnbinom(100000, 10, mu=6)))
.