使用LibSVM计算与Mean/Stddev对的最近匹配

Cer*_*rin 6 python artificial-intelligence machine-learning svm libsvm

我是SVM的新手,我正在尝试使用Python接口来libsvm来对包含mean和stddev的样本进行分类.但是,我得到了荒谬的结果.

这个任务不适合SVM,还是我使用libsvm时出错?下面是我用来测试的简单Python脚本:

#!/usr/bin/env python
# Simple classifier test.
# Adapted from the svm_test.py file included in the standard libsvm distribution.
from collections import defaultdict
from svm import *
# Define our sparse data formatted training and testing sets.
labels = [1,2,3,4]
train = [ # key: 0=mean, 1=stddev
    {0:2.5,1:3.5},
    {0:5,1:1.2},
    {0:7,1:3.3},
    {0:10.3,1:0.3},
]
problem = svm_problem(labels, train)
test = [
    ({0:3, 1:3.11},1),
    ({0:7.3,1:3.1},3),
    ({0:7,1:3.3},3),
    ({0:9.8,1:0.5},4),
]

# Test classifiers.
kernels = [LINEAR, POLY, RBF]
kname = ['linear','polynomial','rbf']
correct = defaultdict(int)
for kn,kt in zip(kname,kernels):
    print kt
    param = svm_parameter(kernel_type = kt, C=10, probability = 1)
    model = svm_model(problem, param)
    for test_sample,correct_label in test:
        pred_label, pred_probability = model.predict_probability(test_sample)
        correct[kn] += pred_label == correct_label

# Show results.
print '-'*80
print 'Accuracy:'
for kn,correct_count in correct.iteritems():
    print '\t',kn, '%.6f (%i of %i)' % (correct_count/float(len(test)), correct_count, len(test))
Run Code Online (Sandbox Code Playgroud)

该域似乎相当简单.我希望如果它被训练为知道2.5的平均值意味着标签1,那么当它看到平均值为2.4时,它应该返回标签1作为最可能的分类.但是,每个内核的准确度为0%.为什么是这样?

有几个附注,有没有办法隐藏libsvm在终端中转储的所有冗长的训练输出?我搜索过libsvm的文档和代码,但我找不到任何办法来解决这个问题.

另外,我曾想在我的稀疏数据集中使用简单字符串作为键(例如{'mean':2.5,'stddev':3.5}).不幸的是,libsvm只支持整数.我尝试使用字符串的长整数表示(例如'mean'== 1109110110971110),但libsvm似乎将这些截断为正常的32位整数.我看到的唯一解决方法是维护一个单独的"密钥"文件,将每个字符串映射到一个整数('mean'= 0,'stddev'= 1).但显然这将是一个痛苦,因为我将不得不维护和持久化第二个文件以及序列化分类器.有没有人看到更简单的方法?

dmc*_*cer 5

问题似乎来自于将多类预测与概率估计相结合.

如果您将代码配置为不进行概率估计,则实际上可以正常工作,例如:

<snip>
# Test classifiers.
kernels = [LINEAR, POLY, RBF]
kname = ['linear','polynomial','rbf']
correct = defaultdict(int)
for kn,kt in zip(kname,kernels):
  print kt
  param = svm_parameter(kernel_type = kt, C=10) # Here -> rm probability = 1
  model = svm_model(problem, param)
  for test_sample,correct_label in test:
      # Here -> change predict_probability to just predict
      pred_label = model.predict(test_sample)
      correct[kn] += pred_label == correct_label
</snip>
Run Code Online (Sandbox Code Playgroud)

有了这个改变,我得到:

--------------------------------------------------------------------------------
Accuracy:
        polynomial 1.000000 (4 of 4)
        rbf 1.000000 (4 of 4)
        linear 1.000000 (4 of 4)
Run Code Online (Sandbox Code Playgroud)

如果您将训练集中的数据加倍(即,将每个数据点包括两次),则使用概率估计进行预测会起作用.但是,我无法找到参数化模型,因此具有概率的多类预测只适用于原始的四个训练点.