coi*_*oin 5 opencv image-processing
我想计算红色圆圈半径(图2).我在使用OpenCV的HoughCircles找到这些圈子时遇到了麻烦.正如你在图中看到的那样.2我只能在中心找到使用HoughCircles以黑色显示的小圆圈.
原版的
图2. 
因为我知道红色圆圈的中心(与红色圆圈的中心相同),有没有办法简单地计算红色圆圈的半径?
是否也可以在更复杂的图像上使用通用的方法计算圆的半径,例如:

编辑:在获得图2后,我的代码中有趣的部分:
threshold(maskedImage, maskedImage, thresh, 255, THRESH_BINARY_INV | THRESH_OTSU);
std::vector<Vec3f> circles;
// Canny(maskedImage, maskedImage, thresh, thresh * 2, 3);
HoughCircles(maskedImage, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows / 4, cannyThreshold, accumulatorThreshold, 0, 0);
Mat display = src_display.clone();
for (size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(display, center, 3, Scalar(0, 255, 0), -1, 8, 0);
// circle outline
circle(display, center, radius, Scalar(0, 0, 255), 3, 8, 0);
}
Run Code Online (Sandbox Code Playgroud)
我试图使用cannyThreshold和累加器玩没有结果.真实的图像是5倍大的.这里是阈值后的示例1 的链接.
谢谢
您已经知道图像中较小的圆圈(以黑色绘制).



下图显示了这种掩模和来自dist的提取区域.为此,我获得了大约29的最大值,这与该圆的半径一致.请注意,图像不按比例.
一个圆圈的掩模,从dist中提取的区域

这是代码(我不使用hough-circles变换):
Mat im = imread(INPUT_FOLDER_PATH + string("ex1.jpg"));
Mat gray;
cvtColor(im, gray, CV_BGR2GRAY);
Mat bw;
threshold(gray, bw, 0, 255, CV_THRESH_BINARY|CV_THRESH_OTSU);
// filtering smaller circles: not using hough-circles transform here.
// you can replace this part with you hough-circles code.
vector<int> circles;
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(bw, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
Rect rect = boundingRect(contours[idx]);
if (abs(1.0 - ((double)rect.width/rect.height) < .1))
{
Mat mask = Mat::zeros(im.rows, im.cols, CV_8U);
drawContours(mask, contours, idx, Scalar(255, 255, 255), -1);
double area = sum(mask).val[0]/255;
double rad = (rect.width + rect.height)/4.0;
double circArea = CV_PI*rad*rad;
double dif = abs(1.0 - area/circArea);
if (dif < .5 && rad < 50 && rad > 30) // restrict the radius
{
circles.push_back(idx); // store smaller circle contours
drawContours(gray, contours, idx, Scalar(0, 0, 0), -1); // fill circles
}
}
}
threshold(gray, bw, 0, 255, CV_THRESH_BINARY_INV|CV_THRESH_OTSU);
Mat dist, distColor, color;
distanceTransform(bw, dist, CV_DIST_L2, 5);
double max;
Point maxLoc;
minMaxLoc(dist, NULL, &max);
dist.convertTo(distColor, CV_8U, 255.0/max);
applyColorMap(distColor, color, COLORMAP_JET);
imshow("", color);
waitKey();
// extract dist region corresponding to each smaller circle and find max
for(int idx = 0; idx < (int)circles.size(); idx++)
{
Mat masked;
Mat mask = Mat::zeros(im.rows, im.cols, CV_8U);
drawContours(mask, contours, circles[idx], Scalar(255, 255, 255), -1);
dist.copyTo(masked, mask);
minMaxLoc(masked, NULL, &max, NULL, &maxLoc);
circle(im, maxLoc, 4, Scalar(0, 255, 0), -1);
circle(im, maxLoc, (int)max, Scalar(0, 0, 255), 2);
cout << "rad: " << max << endl;
}
imshow("", im);
waitKey();
Run Code Online (Sandbox Code Playgroud)
结果(缩放):

希望这可以帮助.