scikit-learn SGDClassifier热启动被忽略了

Sea*_*ett 3 python machine-learning scikit-learn

我正在尝试使用scikit-learn 0.15.1版本的SGDClassifier.除了迭代次数之外,似乎没有任何方法可以设置收敛标准.所以我想通过检查每次迭代时的错误,然后热启动额外的迭代直到改进足够小来手动完成.

不幸的是,warm_start标志和coef_init/intercept_init似乎都没有真正热启动优化 - 它们似乎都从头开始.

我该怎么办?如果没有真正的收敛标准或热启动,则分类器不可用.

请注意下面每次重启时偏差如何增加很多,以及损失如何增加但随着进一步的迭代而下降.经过250次迭代后,偏差为-3.44,平均损失为1.46.

sgd = SGDClassifier(loss='log', alpha=alpha, verbose=1, shuffle=True, 
                    warm_start=True)
print('INITIAL FIT')
sgd.fit(X, y, sample_weight=sample_weight)
sgd.n_iter = 1
print('\nONE MORE ITERATION')
sgd.fit(X, y, sample_weight=sample_weight)
sgd.n_iter = 3
print('\nTHREE MORE ITERATIONS')
sgd.fit(X, y, sample_weight=sample_weight)


INITIAL FIT
-- Epoch 1
Norm: 254.11, NNZs: 92299, Bias: -5.239955, T: 122956, Avg. loss: 28.103236
Total training time: 0.04 seconds.
-- Epoch 2
Norm: 138.81, NNZs: 92598, Bias: -5.180938, T: 245912, Avg. loss: 16.420537
Total training time: 0.08 seconds.
-- Epoch 3
Norm: 100.61, NNZs: 92598, Bias: -5.082776, T: 368868, Avg. loss: 12.240537
Total training time: 0.12 seconds.
-- Epoch 4
Norm: 74.18, NNZs: 92598, Bias: -5.076395, T: 491824, Avg. loss: 9.859404
Total training time: 0.17 seconds.
-- Epoch 5
Norm: 55.57, NNZs: 92598, Bias: -5.072369, T: 614780, Avg. loss: 8.280854
Total training time: 0.21 seconds.

ONE MORE ITERATION
-- Epoch 1
Norm: 243.07, NNZs: 92598, Bias: -11.271497, T: 122956, Avg. loss: 26.148746
Total training time: 0.04 seconds.

THREE MORE ITERATIONS
-- Epoch 1
Norm: 258.70, NNZs: 92598, Bias: -16.058395, T: 122956, Avg. loss: 29.666688
Total training time: 0.04 seconds.
-- Epoch 2
Norm: 142.24, NNZs: 92598, Bias: -15.809559, T: 245912, Avg. loss: 17.435114
Total training time: 0.08 seconds.
-- Epoch 3
Norm: 102.71, NNZs: 92598, Bias: -15.715853, T: 368868, Avg. loss: 12.731181
Total training time: 0.12 seconds.
Run Code Online (Sandbox Code Playgroud)

Pet*_*fer 6

warm_start=True 将使用拟合系数作为起点,但重新开始学习率计划.

如果你想手动检查收敛,我建议你使用partial_fit而不是fit@AdrienNK建议:

sgd = SGDClassifier(loss='log', alpha=alpha, verbose=1, shuffle=True, 
                warm_start=True, n_iter=1)
sgd.partial_fit(X, y)
# after 1st iteration
sgd.partial_fit(X, y)
# after 2nd iteration
...
Run Code Online (Sandbox Code Playgroud)