我试图找到字节数cvCreateImage(size, d, nChan); 函数调用分配给返回的指针。(说尺寸:宽度=1200,高度=600,d=32,nChan=3)
opencv 分配一个对齐的内存位置还是只是一个随机的内存位置?
使用函数cvReleaseImage释放的内存是否立即可供正在运行的应用程序使用?(假设一个程序在一个循环中创建和释放图像,循环大约 30000 次,是否会导致内存不足错误或任何碎片错误)
您可以在OpenCV 源代码中查找问题的答案。
cvCreateImage()分配一个sizeof(IplImage)(当前 112 字节)的头。数据有点复杂;如果你想image->imageSize在alloc.cpp中 得到一个确切的答案 grep ,但它大约是size.height * size.width * d * nChan / 8(例如,8,640,000)。
内存最终fastMalloc()在 alloc.cpp 中分配并与 16 字节边界对齐 - 但您返回的指针是该边界上方的指针的大小。
cvReleaseImage减少引用计数,并且仅在引用计数达到零时才释放数据。如果您的程序只是在循环中创建和发布图像,那么除了性能之外,您应该没有问题。当您在下一次迭代中再次需要它时,取消分配图像内存是一种糟糕的设计。
确切的分配/解除分配行为将取决于您的 OpenCV 是否使用 CV_USE_SYSTEM_MALLOC 构建。
如果您使用的CV ::垫代替的IplImage,OpenCV的照顾所有的内存管理问题的全自动。我强烈建议您重写代码以使用 C++ API(即使用 Mat 的)
例如,这里是您在上述评论中链接的代码的翻译:
// Based on http://mehdi.rabah.free.fr/SSIM/SSIM.cpp
// Converted to OpenCV C++ API by B...
/*
* The equivalent of Zhou Wang's SSIM matlab code using OpenCV.
* from http://www.cns.nyu.edu/~zwang/files/research/ssim/index.html
* The measure is described in :
* "Image quality assessment: From error measurement to structural similarity"
* C++ code by Rabah Mehdi. http://mehdi.rabah.free.fr/SSIM
*
* This implementation is under the public domain.
* @see http://creativecommons.org/licenses/publicdomain/
* The original work may be under copyrights.
*/
//#include <cv.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
//#include <highgui.h>
#include "opencv2/highgui/highgui.hpp"
//#include <iostream.h>
#include <iostream>
using namespace std;
/*
* Parameters : complete path to the two image to be compared
* The file format must be supported by your OpenCV build
*/
int main(int argc, char** argv)
{
if(argc!=3)
return -1;
// default settings
double C1 = 6.5025, C2 = 58.5225;
/*
IplImage
*img1=NULL, *img2=NULL, *img1_img2=NULL,
*img1_temp=NULL, *img2_temp=NULL,
*img1_sq=NULL, *img2_sq=NULL,
*mu1=NULL, *mu2=NULL,
*mu1_sq=NULL, *mu2_sq=NULL, *mu1_mu2=NULL,
*sigma1_sq=NULL, *sigma2_sq=NULL, *sigma12=NULL,
*ssim_map=NULL, *temp1=NULL, *temp2=NULL, *temp3=NULL;
*/
/***************************** INITS **********************************/
//img1_temp = cvLoadImage(argv[1]);
cv::Mat img1 = cv::imread(argv[1]);
//img2_temp = cvLoadImage(argv[2]);
cv::Mat img2 = cv::imread(argv[2]);
//if(img1_temp==NULL || img2_temp==NULL)
if(img1.empty() || img2.empty())
return -1;
//int x=img1_temp->width, y=img1_temp->height;
//int nChan=img1_temp->nChannels, d=IPL_DEPTH_32F;
//CvSize size = cvSize(x, y);
//img1 = cvCreateImage( size, d, nChan);
//img2 = cvCreateImage( size, d, nChan);
//cvConvert(img1_temp, img1);
img1.convertTo(img1, CV_32F);
//cvConvert(img2_temp, img2);
img2.convertTo(img2, CV_32F);
//cvReleaseImage(&img1_temp);
//cvReleaseImage(&img2_temp);
//img1_sq = cvCreateImage( size, d, nChan);
cv::Mat img1_sq;
//img2_sq = cvCreateImage( size, d, nChan);
cv::Mat img2_sq;
//img1_img2 = cvCreateImage( size, d, nChan);
cv::Mat img1_img2;
//cvPow( img1, img1_sq, 2 );
cv::pow(img1, 2, img1_sq);
//cvPow( img2, img2_sq, 2 );
cv::pow(img1, 2, img1_sq);
//cvMul( img1, img2, img1_img2, 1 );
cv::multiply(img1, img2, img1_img2);
//mu1 = cvCreateImage( size, d, nChan);
cv::Mat mu1;
//mu2 = cvCreateImage( size, d, nChan);
cv::Mat mu2;
//mu1_sq = cvCreateImage( size, d, nChan);
cv::Mat mu1_sq;
//mu2_sq = cvCreateImage( size, d, nChan);
cv::Mat mu2_sq;
//mu1_mu2 = cvCreateImage( size, d, nChan);
cv::Mat mu1_mu2;
//sigma1_sq = cvCreateImage( size, d, nChan);
cv::Mat sigma1_sq;
//sigma2_sq = cvCreateImage( size, d, nChan);
cv::Mat sigma2_sq;
//sigma12 = cvCreateImage( size, d, nChan);
cv::Mat sigma12;
//temp1 = cvCreateImage( size, d, nChan);
//temp2 = cvCreateImage( size, d, nChan);
//temp3 = cvCreateImage( size, d, nChan);
//ssim_map = cvCreateImage( size, d, nChan);
cv::Mat ssim_map;
/*************************** END INITS **********************************/
//////////////////////////////////////////////////////////////////////////
// PRELIMINARY COMPUTING
//cvSmooth( img1, mu1, CV_GAUSSIAN, 11, 11, 1.5 );
cv::GaussianBlur(img1, mu1, cv::Size(11, 11), 1.5);
//cvSmooth( img2, mu2, CV_GAUSSIAN, 11, 11, 1.5 );
cv::GaussianBlur(img2, mu2, cv::Size(11, 11), 1.5);
//cvPow( mu1, mu1_sq, 2 );
cv::pow(mu1, 2, mu1_sq);
//cvPow( mu2, mu2_sq, 2 );
cv::pow(mu2, 2, mu2_sq);
//cvMul( mu1, mu2, mu1_mu2, 1 );
cv::multiply(mu1, mu2, mu1_mu2);
//cvSmooth( img1_sq, sigma1_sq, CV_GAUSSIAN, 11, 11, 1.5 );
cv::GaussianBlur(img1_sq, sigma1_sq, cv::Size(11, 11), 1.5);
//cvAddWeighted( sigma1_sq, 1, mu1_sq, -1, 0, sigma1_sq );
cv::addWeighted(sigma1_sq, 1.0, mu1_sq, -1.0, 0.0, sigma1_sq);
//cvSmooth( img2_sq, sigma2_sq, CV_GAUSSIAN, 11, 11, 1.5 );
cv::GaussianBlur(img2_sq, sigma2_sq, cv::Size(11, 11), 1.5);
//cvAddWeighted( sigma2_sq, 1, mu2_sq, -1, 0, sigma2_sq );
cv::addWeighted(sigma2_sq, 1.0, mu2_sq, -1.0, 0.0, sigma2_sq);
//cvSmooth( img1_img2, sigma12, CV_GAUSSIAN, 11, 11, 1.5 );
cv::GaussianBlur(img1_img2, sigma12, cv::Size(11, 11), 1.5);
//cvAddWeighted( sigma12, 1, mu1_mu2, -1, 0, sigma12 );
cv::addWeighted(sigma12, 1.0, mu1_mu2, -1.0, 0.0, sigma12);
//////////////////////////////////////////////////////////////////////////
// FORMULA
// (2*mu1_mu2 + C1)
//cvScale( mu1_mu2, temp1, 2 );
//cvAddS( temp1, cvScalarAll(C1), temp1 );
cv::Mat temp3 = 2 * mu1_mu2 + C1;
// (2*sigma12 + C2)
//cvScale( sigma12, temp2, 2 );
//cvAddS( temp2, cvScalarAll(C2), temp2 );
// ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
//cvMul( temp1, temp2, temp3, 1 );
temp3 = temp3.mul(2 * sigma12 + C2);
// (mu1_sq + mu2_sq + C1)
//cvAdd( mu1_sq, mu2_sq, temp1 );
//cvAddS( temp1, cvScalarAll(C1), temp1 );
cv::Mat temp1 = mu1_sq + mu2_sq + C1;
// (sigma1_sq + sigma2_sq + C2)
//cvAdd( sigma1_sq, sigma2_sq, temp2 );
//cvAddS( temp2, cvScalarAll(C2), temp2 );
// ((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2))
//cvMul( temp1, temp2, temp1, 1 );
temp1 = temp1.mul(sigma1_sq + sigma2_sq + C2);
// ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2))
//cvDiv( temp3, temp1, ssim_map, 1 );
cv::divide(temp3, temp1, ssim_map);
//CvScalar index_scalar = cvAvg( ssim_map );
cv::Scalar index_scalar = cv::mean(ssim_map);
// through observation, there is approximately
// 1% error max with the original matlab program
cout << "(R, G & B SSIM index)" << endl ;
cout << index_scalar.val[2] * 100 << "%" << endl ;
cout << index_scalar.val[1] * 100 << "%" << endl ;
cout << index_scalar.val[0] * 100 << "%" << endl ;
/*
// if you use this code within a program
// don't forget to release the IplImages
*/
return 0;
}
Run Code Online (Sandbox Code Playgroud)