Ged*_*des 23 python equation numpy matplotlib sympy
当绘制具有不连续性/渐近线/奇点/任何图形的图形时,是否有任何自动方法可以防止Matplotlib在"中断"中"加入点"?(请参阅下面的代码/图片).
我读到Sage有一个看上去很好的[detect_poles]工具,但我真的希望它与Matplotlib一起使用.
import matplotlib.pyplot as plt
import numpy as np
from sympy import sympify, lambdify
from sympy.abc import x
fig = plt.figure(1)
ax = fig.add_subplot(111)
# set up axis
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# setup x and y ranges and precision
xx = np.arange(-0.5,5.5,0.01)
# draw my curve
myfunction=sympify(1/(x-2))
mylambdifiedfunction=lambdify(x,myfunction,'numpy')
ax.plot(xx, mylambdifiedfunction(xx),zorder=100,linewidth=3,color='red')
#set bounds
ax.set_xbound(-1,6)
ax.set_ybound(-4,4)
plt.show()
Run Code Online (Sandbox Code Playgroud)
tom*_*m10 23
通过使用蒙板阵列,您可以避免绘制曲线的选定区域.
要删除x = 2处的奇点:
import matplotlib.numerix.ma as M # for older versions, prior to .98
#import numpy.ma as M # for newer versions of matplotlib
from pylab import *
figure()
xx = np.arange(-0.5,5.5,0.01)
vals = 1/(xx-2)
vals = M.array(vals)
mvals = M.masked_where(xx==2, vals)
subplot(121)
plot(xx, mvals, linewidth=3, color='red')
xlim(-1,6)
ylim(-5,5)
Run Code Online (Sandbox Code Playgroud)
这条简单的曲线可能会更清楚地排除哪些点:
xx = np.arange(0,6,.2)
vals = M.array(xx)
mvals = M.masked_where(vals%2==0, vals)
subplot(122)
plot(xx, mvals, color='b', linewidth=3)
plot(xx, vals, 'rx')
show()
Run Code Online (Sandbox Code Playgroud)
Pau*_*aul 13
这可能不是你要找的优雅的解决方案,但如果只是想在大多数情况下的结果,你可以"夹"您绘制的数据的大小值+?
和-?
分别.Matplotlib没有绘制这些.当然,你必须小心,不要让你的分辨率太低或剪裁阈值太高.
utol = 100.
ltol = -100.
yy = 1/(xx-2)
yy[yy>utol] = np.inf
yy[yy<ltol] = -np.inf
ax.plot(xx, yy, zorder=100, linewidth=3, color='red')
Run Code Online (Sandbox Code Playgroud)
不,我认为没有内置的方法matplotlib
可以忽略这些观点.毕竟,它只是连接点,对功能或点之间发生的事情一无所知.
但是,您可以使用sympy
找到极点,然后将功能的连续部分拼接在一起.这里有一些令人难以置信的丑陋代码,它确实如此:
from pylab import *
from sympy import solve
from sympy.abc import x
from sympy.functions.elementary.complexes import im
xmin = -0.5
xmax = 5.5
xstep = 0.01
# solve for 1/f(x)=0 -- we will have poles there
discontinuities = sort(solve(1/(1/(x-2)),x))
# pieces from xmin to last discontinuity
last_b = xmin
for b in discontinuities:
# check that this discontinuity is inside our range, also make sure it's real
if b<last_b or b>xmax or im(b):
continue
xi = np.arange(last_b, b, xstep)
plot(xi, 1./(xi-2),'r-')
last_b = b
# from last discontinuity to xmax
xi = np.arange(last_b, xmax, xstep)
plot(xi, 1./(xi-2),'r-')
xlim(xmin, xmax)
ylim(-4,4)
show()
Run Code Online (Sandbox Code Playgroud)
例如http://i43.tinypic.com/30mvbzb.jpg
归档时间: |
|
查看次数: |
8163 次 |
最近记录: |