mit*_*hra 19 java hadoop hdfs apache-spark apache-spark-sql
我是新来的火花,我想使用group-by&reduce从CSV中找到以下内容(使用一行):
Department, Designation, costToCompany, State
Sales, Trainee, 12000, UP
Sales, Lead, 32000, AP
Sales, Lead, 32000, LA
Sales, Lead, 32000, TN
Sales, Lead, 32000, AP
Sales, Lead, 32000, TN
Sales, Lead, 32000, LA
Sales, Lead, 32000, LA
Marketing, Associate, 18000, TN
Marketing, Associate, 18000, TN
HR, Manager, 58000, TN
Run Code Online (Sandbox Code Playgroud)
我想通过Department,Designation,State简化包含sum(costToCompany)和TotalEmployeeCount的附加列的CSV
应得到如下结果:
Dept, Desg, state, empCount, totalCost
Sales,Lead,AP,2,64000
Sales,Lead,LA,3,96000
Sales,Lead,TN,2,64000
Run Code Online (Sandbox Code Playgroud)
有没有办法使用转换和动作来实现这一点.或者我们应该进行RDD操作?
eme*_*cas 40
创建一个类(模式)来封装你的结构(它不是方法B所必需的,但如果你使用Java,它会使你的代码更容易阅读)
public class Record implements Serializable {
String department;
String designation;
long costToCompany;
String state;
// constructor , getters and setters
}
Run Code Online (Sandbox Code Playgroud)加载CVS(JSON)文件
JavaSparkContext sc;
JavaRDD<String> data = sc.textFile("path/input.csv");
//JavaSQLContext sqlContext = new JavaSQLContext(sc); // For previous versions
SQLContext sqlContext = new SQLContext(sc); // In Spark 1.3 the Java API and Scala API have been unified
JavaRDD<Record> rdd_records = sc.textFile(data).map(
new Function<String, Record>() {
public Record call(String line) throws Exception {
// Here you can use JSON
// Gson gson = new Gson();
// gson.fromJson(line, Record.class);
String[] fields = line.split(",");
Record sd = new Record(fields[0], fields[1], fields[2].trim(), fields[3]);
return sd;
}
});
Run Code Online (Sandbox Code Playgroud)此时您有两种方法:
注册表(使用您定义的Schema类)
JavaSchemaRDD table = sqlContext.applySchema(rdd_records, Record.class);
table.registerAsTable("record_table");
table.printSchema();
Run Code Online (Sandbox Code Playgroud)使用所需的Query-group-by查询表
JavaSchemaRDD res = sqlContext.sql("
select department,designation,state,sum(costToCompany),count(*)
from record_table
group by department,designation,state
");
Run Code Online (Sandbox Code Playgroud)在这里,您还可以使用SQL方法执行您想要的任何其他查询
使用复合密钥映射:Department
,Designation
,State
JavaPairRDD<String, Tuple2<Long, Integer>> records_JPRDD =
rdd_records.mapToPair(new
PairFunction<Record, String, Tuple2<Long, Integer>>(){
public Tuple2<String, Tuple2<Long, Integer>> call(Record record){
Tuple2<String, Tuple2<Long, Integer>> t2 =
new Tuple2<String, Tuple2<Long,Integer>>(
record.Department + record.Designation + record.State,
new Tuple2<Long, Integer>(record.costToCompany,1)
);
return t2;
}
Run Code Online (Sandbox Code Playgroud)
});
reduceByKey使用复合键,求和costToCompany
列,并按键累计记录数
JavaPairRDD<String, Tuple2<Long, Integer>> final_rdd_records =
records_JPRDD.reduceByKey(new Function2<Tuple2<Long, Integer>, Tuple2<Long,
Integer>, Tuple2<Long, Integer>>() {
public Tuple2<Long, Integer> call(Tuple2<Long, Integer> v1,
Tuple2<Long, Integer> v2) throws Exception {
return new Tuple2<Long, Integer>(v1._1 + v2._1, v1._2+ v2._2);
}
});
Run Code Online (Sandbox Code Playgroud)mrs*_*vas 20
可以使用Spark内置CSV阅读器解析CSV文件.它将在成功读取文件时返回DataFrame/DataSet.在DataFrame/DataSet之上,您可以轻松应用类似SQL的操作.
spark
import org.apache.spark.sql.SparkSession;
SparkSession spark = SparkSession
.builder()
.appName("Java Spark SQL Example")
.getOrCreate();
Run Code Online (Sandbox Code Playgroud)
StructType
import org.apache.spark.sql.types.StructType;
StructType schema = new StructType()
.add("department", "string")
.add("designation", "string")
.add("ctc", "long")
.add("state", "string");
Run Code Online (Sandbox Code Playgroud)
Dataset<Row> df = spark.read()
.option("mode", "DROPMALFORMED")
.schema(schema)
.csv("hdfs://path/input.csv");
Run Code Online (Sandbox Code Playgroud)
1. SQL方式
在spark sql metastore中注册表以执行SQL操作
Run Code Online (Sandbox Code Playgroud)df.createOrReplaceTempView("employee");
在已注册的数据帧上运行SQL查询
Run Code Online (Sandbox Code Playgroud)Dataset<Row> sqlResult = spark.sql( "SELECT department, designation, state, SUM(ctc), COUNT(department)" + " FROM employee GROUP BY department, designation, state"); sqlResult.show(); //for testing
2.对象链接或编程或类似Java的方式
为sql函数执行必要的导入
Run Code Online (Sandbox Code Playgroud)import static org.apache.spark.sql.functions.count; import static org.apache.spark.sql.functions.sum;
使用
groupBy
和agg
数据框/数据集来执行count
和sum
数据Run Code Online (Sandbox Code Playgroud)Dataset<Row> dfResult = df.groupBy("department", "designation", "state") .agg(sum("ctc"), count("department")); // After Spark 1.6 columns mentioned in group by will be added to result by default dfResult.show();//for testing
"org.apache.spark" % "spark-core_2.11" % "2.0.0"
"org.apache.spark" % "spark-sql_2.11" % "2.0.0"
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
61318 次 |
最近记录: |