将基于GPU构建的theano模型转换为CPU?

use*_*986 5 cuda gpu pickle theano deep-learning

我有一些基于gpu的深度学习模型的pickle文件.我正试图在生产中使用它们.但是,当我尝试在服务器上取消它们时,我收到以下错误.

回溯(最近一次调用最后一次):
文件"score.py",第30行,在
model =(cPickle.load(file))
文件"/usr/local/python2.7/lib/python2.7/site-packages/ Theano-0.6.0-py2.7.egg/theano/sandbox/cuda/type.py",第485行,在CudaNdarray_unpickler中
返回cuda.CudaNdarray(npa)
AttributeError :("'NoneType'对象没有属性'CudaNdarray'" ,,(array([[0.011515,0.01171047,0.10408644,...,-
0.0343636,0.04944979,-0.06583775],
[ - 0.03771918,0.080524,-0.10609912,...,
0.11019105,-0.0570752,0.02100536],
[ - 0.03628891 ,-0.07109226,-0.00932018,...,0.04316209,0.02817888,0.05785328
],
...,
[0.0703947,-0.00172865,-0.05942701,...
, - 0.00999349,0.01624184,0.09832744],
[ - 0.09029484,-0.11509365, -0.07193922,...,0.10658887,0.17730837,0.01104965
],
[0.06659461,-0.02492988,0.02271739,...
, - 0.0646857,0.03879852,0.08779807]],dtype = float32),))

我在我的本地机器上检查了那个cudaNdarray包,它没有安装,但我仍然可以解开它们.但在服务器中,我无法做到.如何让它们在没有GPU的服务器上运行?

Kyl*_*ner 4

pylearn2 中有一个脚本可以满足您的需要:

pylearn2/scripts/gpu_pkl_to_cpu_pkl.py