gex*_*ide 1370 c++ performance x86 assembly compiler-optimization
我一直在寻找最快的方法来处理popcount大数据.我遇到了一个很奇怪的效果:改变从循环变量unsigned至uint64_t50%在我的电脑上所做的性能下降.
#include <iostream>
#include <chrono>
#include <x86intrin.h>
int main(int argc, char* argv[]) {
using namespace std;
if (argc != 2) {
cerr << "usage: array_size in MB" << endl;
return -1;
}
uint64_t size = atol(argv[1])<<20;
uint64_t* buffer = new uint64_t[size/8];
char* charbuffer = reinterpret_cast<char*>(buffer);
for (unsigned i=0; i<size; ++i)
charbuffer[i] = rand()%256;
uint64_t count,duration;
chrono::time_point<chrono::system_clock> startP,endP;
{
startP = chrono::system_clock::now();
count = 0;
for( unsigned k = 0; k < 10000; k++){
// Tight unrolled loop with unsigned
for (unsigned i=0; i<size/8; i+=4) {
count += _mm_popcnt_u64(buffer[i]);
count += _mm_popcnt_u64(buffer[i+1]);
count += _mm_popcnt_u64(buffer[i+2]);
count += _mm_popcnt_u64(buffer[i+3]);
}
}
endP = chrono::system_clock::now();
duration = chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "unsigned\t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
{
startP = chrono::system_clock::now();
count=0;
for( unsigned k = 0; k < 10000; k++){
// Tight unrolled loop with uint64_t
for (uint64_t i=0;i<size/8;i+=4) {
count += _mm_popcnt_u64(buffer[i]);
count += _mm_popcnt_u64(buffer[i+1]);
count += _mm_popcnt_u64(buffer[i+2]);
count += _mm_popcnt_u64(buffer[i+3]);
}
}
endP = chrono::system_clock::now();
duration = chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "uint64_t\t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
free(charbuffer);
}
Run Code Online (Sandbox Code Playgroud)
如您所见,我们创建一个随机数据缓冲区,其大小为x兆字节,x从命令行读取.然后,我们遍历缓冲区并使用展开的x86 popcount内部版本来执行popcount.为了获得更精确的结果,我们做了10,000次popcount.我们测量popcount的时间.在大写的情况下,内循环变量unsigned在小写的情况下是内循环变量uint64_t.我认为这应该没有区别,但事实恰恰相反.
我像这样编译它(g ++版本:Ubuntu 4.8.2-19ubuntu1):
g++ -O3 -march=native -std=c++11 test.cpp -o test
Run Code Online (Sandbox Code Playgroud)
以下是我的Haswell Core i7-4770K CPU @ 3.50 GHz运行的结果test 1(所以1 MB随机数据):
正如你看到的,的吞吐量uint64_t版本是只有一半的一个unsigned版本!问题似乎是生成了不同的程序集,但为什么呢?首先,我想到了编译器错误,所以我尝试了clang++(Ubuntu Clang版本3.4-1ubuntu3):
clang++ -O3 -march=native -std=c++11 teest.cpp -o test
Run Code Online (Sandbox Code Playgroud)
结果: test 1
所以,它几乎是相同的结果,仍然很奇怪.但现在它变得非常奇怪.我用常量替换从输入读取的缓冲区大小1,所以我改变:
uint64_t size = atol(argv[1]) << 20;
Run Code Online (Sandbox Code Playgroud)
至
uint64_t size = 1 << 20;
Run Code Online (Sandbox Code Playgroud)
因此,编译器现在知道编译时的缓冲区大小.也许它可以添加一些优化!以下是数字g++:
现在,两个版本都同样快.然而,unsigned 变得更慢!它从下降26到20 GB/s,因此用常数值替换非常数导致去优化.说真的,我不知道这里发生了什么!但现在到clang++新版本:
等等,什么?现在,两个版本的速度都降至15 GB/s.因此,对于Clang来说,将两个非常数替换为常数值甚至会导致代码速度变慢!
我问一位有Ivy Bridge CPU 的同事来编译我的基准测试.他得到了类似的结果,所以它似乎不是哈斯威尔.因为这里有两个编译器产生奇怪的结果,所以它似乎也不是编译器错误.我们这里没有AMD CPU,所以我们只能用Intel测试.
拿第一个例子(带有一个atol(argv[1]))并static在变量之前放一个,即:
static uint64_t size=atol(argv[1])<<20;
Run Code Online (Sandbox Code Playgroud)
以下是我在g ++中的结果:
是的,还有另一种选择.我们仍然拥有快速26 GB/s u32,但我们设法u64至少从13 GB/s到20 GB/s版本!在我的同事的PC上,u64版本变得比u32版本更快,产生了最快的结果.可悲的是,这只适用于g++,clang++似乎并不关心static.
你能解释一下这些结果吗?特别:
u32和u64?之间有这样的区别?static关键字使u64循环更快?甚至比同事电脑上的原始代码还要快!我知道优化是一个棘手的领域,但是,我从未想过这么小的变化会导致执行时间的100%差异,并且像缓冲区大小一样的小因素可以再次完全混合结果.当然,我总是想拥有能够突破26 GB/s的版本.我能想到的唯一可靠的方法是复制粘贴此案例的程序集并使用内联汇编.这是摆脱编辑器的唯一方法,这些编译器似乎对小变化感到厌烦.你怎么看?还有另一种方法可靠地获得具有最佳性能的代码吗?
以下是各种结果的反汇编:
来自g ++/u32/non-const bufsize的 26 GB/s版本:
0x400af8:
lea 0x1(%rdx),%eax
popcnt (%rbx,%rax,8),%r9
lea 0x2(%rdx),%edi
popcnt (%rbx,%rcx,8),%rax
lea 0x3(%rdx),%esi
add %r9,%rax
popcnt (%rbx,%rdi,8),%rcx
add $0x4,%edx
add %rcx,%rax
popcnt (%rbx,%rsi,8),%rcx
add %rcx,%rax
mov %edx,%ecx
add %rax,%r14
cmp %rbp,%rcx
jb 0x400af8
Run Code Online (Sandbox Code Playgroud)
来自g ++/u64/non-const bufsize的 13 GB/s版本:
0x400c00:
popcnt 0x8(%rbx,%rdx,8),%rcx
popcnt (%rbx,%rdx,8),%rax
add %rcx,%rax
popcnt 0x10(%rbx,%rdx,8),%rcx
add %rcx,%rax
popcnt 0x18(%rbx,%rdx,8),%rcx
add $0x4,%rdx
add %rcx,%rax
add %rax,%r12
cmp %rbp,%rdx
jb 0x400c00
Run Code Online (Sandbox Code Playgroud)
来自clang ++/u64/non-const bufsize的 15 GB/s版本:
0x400e50:
popcnt (%r15,%rcx,8),%rdx
add %rbx,%rdx
popcnt 0x8(%r15,%rcx,8),%rsi
add %rdx,%rsi
popcnt 0x10(%r15,%rcx,8),%rdx
add %rsi,%rdx
popcnt 0x18(%r15,%rcx,8),%rbx
add %rdx,%rbx
add $0x4,%rcx
cmp %rbp,%rcx
jb 0x400e50
Run Code Online (Sandbox Code Playgroud)
来自g ++/u32&u64/const bufsize的 20 GB/s版本:
0x400a68:
popcnt (%rbx,%rdx,1),%rax
popcnt 0x8(%rbx,%rdx,1),%rcx
add %rax,%rcx
popcnt 0x10(%rbx,%rdx,1),%rax
add %rax,%rcx
popcnt 0x18(%rbx,%rdx,1),%rsi
add $0x20,%rdx
add %rsi,%rcx
add %rcx,%rbp
cmp $0x100000,%rdx
jne 0x400a68
Run Code Online (Sandbox Code Playgroud)
来自clang ++/u32&u64/const bufsize的 15 GB/s版本:
0x400dd0:
popcnt (%r14,%rcx,8),%rdx
add %rbx,%rdx
popcnt 0x8(%r14,%rcx,8),%rsi
add %rdx,%rsi
popcnt 0x10(%r14,%rcx,8),%rdx
add %rsi,%rdx
popcnt 0x18(%r14,%rcx,8),%rbx
add %rdx,%rbx
add $0x4,%rcx
cmp $0x20000,%rcx
jb 0x400dd0
Run Code Online (Sandbox Code Playgroud)
有趣的是,最快的(26 GB/s)版本也是最长的版本!它似乎是唯一使用的解决方案lea.有些版本用于jb跳转,有些版本用于跳转jne.但除此之外,所有版本似乎都具有可比性.我没有看到100%的性能差距可能来自哪里,但我不太擅长破译装配.最慢的(13 GB/s)版本看起来甚至非常简短.有谁能解释一下?
无论这个问题的答案是什么; 我已经了解到,在非常热的循环中,每个细节都很重要,甚至细节似乎与热代码没有任何关联.我从来没有想过用于循环变量的类型,但正如您所看到的那样,这种微小的变化可以产生100%的差异!即使是缓冲区的存储类型也会产生巨大的差异,正如我们static在大小变量前面插入关键字所看到的那样!将来,在编写对系统性能至关重要的真正紧密和热循环时,我将始终在各种编译器上测试各种替代方案.
有趣的是,尽管我已经将循环展开了四次,但性能差异仍然很高.因此,即使您展开,您仍然会受到主要性能偏差的影响.很有趣.
Mys*_*ial 1514
罪魁祸首:虚假数据依赖(并且编译器甚至不知道它)
在Sandy/Ivy Bridge和Haswell处理器上,指令:
popcnt src, dest
Run Code Online (Sandbox Code Playgroud)
似乎对目标寄存器具有错误依赖性dest.即使指令只写入它,指令也会等到dest执行前准备就绪.
这种依赖性不仅仅会阻止lzcnt单循环迭代中的4 秒.它可以进行循环迭代,使得处理器不可能并行化不同的循环迭代.
在tzcnt对popcnt等的调整不会直接影响的问题.但它们影响寄存器分配器,它将寄存器分配给变量.
在您的情况下,速度是固定(假)依赖链的直接结果,具体取决于寄存器分配器决定做什么.
bsf- bsr- popcnt- unsigned→下一次迭代uint64_t- popcnt- add- popcnt→下一次迭代popcnt- popcnt→下一次迭代add- popcnt→下一次迭代20 GB/s和26 GB/s之间的差异似乎是间接寻址的一个小工件.无论哪种方式,一旦达到此速度,处理器就会开始遇到其他瓶颈.
为了测试这个,我使用内联汇编绕过编译器并获得我想要的精确程序集.我还拆分了add变量以打破可能会破坏基准测试的所有其他依赖项.
结果如下:
Sandy Bridge Xeon @ 3.5 GHz :(完整的测试代码可以在底部找到)
popcnt不同的寄存器:18.6195 GB/s
.L4:
movq (%rbx,%rax,8), %r8
movq 8(%rbx,%rax,8), %r9
movq 16(%rbx,%rax,8), %r10
movq 24(%rbx,%rax,8), %r11
addq $4, %rax
popcnt %r8, %r8
add %r8, %rdx
popcnt %r9, %r9
add %r9, %rcx
popcnt %r10, %r10
add %r10, %rdi
popcnt %r11, %r11
add %r11, %rsi
cmpq $131072, %rax
jne .L4
Run Code Online (Sandbox Code Playgroud)
相同寄存器:8.49272 GB/s
.L9:
movq (%rbx,%rdx,8), %r9
movq 8(%rbx,%rdx,8), %r10
movq 16(%rbx,%rdx,8), %r11
movq 24(%rbx,%rdx,8), %rbp
addq $4, %rdx
# This time reuse "rax" for all the popcnts.
popcnt %r9, %rax
add %rax, %rcx
popcnt %r10, %rax
add %rax, %rsi
popcnt %r11, %rax
add %rax, %r8
popcnt %rbp, %rax
add %rax, %rdi
cmpq $131072, %rdx
jne .L9
Run Code Online (Sandbox Code Playgroud)
相同的寄存器断链:17.8869 GB/s
.L14:
movq (%rbx,%rdx,8), %r9
movq 8(%rbx,%rdx,8), %r10
movq 16(%rbx,%rdx,8), %r11
movq 24(%rbx,%rdx,8), %rbp
addq $4, %rdx
# Reuse "rax" for all the popcnts.
xor %rax, %rax # Break the cross-iteration dependency by zeroing "rax".
popcnt %r9, %rax
add %rax, %rcx
popcnt %r10, %rax
add %rax, %rsi
popcnt %r11, %rax
add %rax, %r8
popcnt %rbp, %rax
add %rax, %rdi
cmpq $131072, %rdx
jne .L14
Run Code Online (Sandbox Code Playgroud)
那么编译器出了什么问题呢?
似乎GCC和Visual Studio都没有意识到它popcnt具有如此错误的依赖性.然而,这些错误的依赖并不罕见.这只是编译器是否意识到它的问题.
popcnt并不是最常用的指令.所以主要的编译器可能会错过这样的东西并不奇怪.在任何地方似乎都没有提到这个问题的文件.如果英特尔没有透露它,那么外面的任何人都不会知道,直到有人碰到它.
(更新: 从版本4.9.2开始,GCC意识到这种错误依赖性并生成代码以在启用优化时对其进行补偿.来自其他供应商的主要编译器,包括Clang,MSVC,甚至是英特尔自己的ICC,还不知道这个微体系结构的错误,不会发出补偿它的代码.)
为什么CPU有这样的错误依赖?
我们只能推测,但英特尔对很多双操作数指令的处理可能相同.像普通的指令popcnt,count有两个操作数两者都输入.因此,英特尔可能会推动g++ popcnt.cpp -std=c++0x -O3 -save-temps -march=native同一类别,以保持处理器设计的简单性.
AMD处理器似乎没有这种错误的依赖性.
完整的测试代码如下:
#include <iostream>
#include <chrono>
#include <x86intrin.h>
int main(int argc, char* argv[]) {
using namespace std;
uint64_t size=1<<20;
uint64_t* buffer = new uint64_t[size/8];
char* charbuffer=reinterpret_cast<char*>(buffer);
for (unsigned i=0;i<size;++i) charbuffer[i]=rand()%256;
uint64_t count,duration;
chrono::time_point<chrono::system_clock> startP,endP;
{
uint64_t c0 = 0;
uint64_t c1 = 0;
uint64_t c2 = 0;
uint64_t c3 = 0;
startP = chrono::system_clock::now();
for( unsigned k = 0; k < 10000; k++){
for (uint64_t i=0;i<size/8;i+=4) {
uint64_t r0 = buffer[i + 0];
uint64_t r1 = buffer[i + 1];
uint64_t r2 = buffer[i + 2];
uint64_t r3 = buffer[i + 3];
__asm__(
"popcnt %4, %4 \n\t"
"add %4, %0 \n\t"
"popcnt %5, %5 \n\t"
"add %5, %1 \n\t"
"popcnt %6, %6 \n\t"
"add %6, %2 \n\t"
"popcnt %7, %7 \n\t"
"add %7, %3 \n\t"
: "+r" (c0), "+r" (c1), "+r" (c2), "+r" (c3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
);
}
}
count = c0 + c1 + c2 + c3;
endP = chrono::system_clock::now();
duration=chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "No Chain\t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
{
uint64_t c0 = 0;
uint64_t c1 = 0;
uint64_t c2 = 0;
uint64_t c3 = 0;
startP = chrono::system_clock::now();
for( unsigned k = 0; k < 10000; k++){
for (uint64_t i=0;i<size/8;i+=4) {
uint64_t r0 = buffer[i + 0];
uint64_t r1 = buffer[i + 1];
uint64_t r2 = buffer[i + 2];
uint64_t r3 = buffer[i + 3];
__asm__(
"popcnt %4, %%rax \n\t"
"add %%rax, %0 \n\t"
"popcnt %5, %%rax \n\t"
"add %%rax, %1 \n\t"
"popcnt %6, %%rax \n\t"
"add %%rax, %2 \n\t"
"popcnt %7, %%rax \n\t"
"add %%rax, %3 \n\t"
: "+r" (c0), "+r" (c1), "+r" (c2), "+r" (c3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
: "rax"
);
}
}
count = c0 + c1 + c2 + c3;
endP = chrono::system_clock::now();
duration=chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "Chain 4 \t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
{
uint64_t c0 = 0;
uint64_t c1 = 0;
uint64_t c2 = 0;
uint64_t c3 = 0;
startP = chrono::system_clock::now();
for( unsigned k = 0; k < 10000; k++){
for (uint64_t i=0;i<size/8;i+=4) {
uint64_t r0 = buffer[i + 0];
uint64_t r1 = buffer[i + 1];
uint64_t r2 = buffer[i + 2];
uint64_t r3 = buffer[i + 3];
__asm__(
"xor %%rax, %%rax \n\t" // <--- Break the chain.
"popcnt %4, %%rax \n\t"
"add %%rax, %0 \n\t"
"popcnt %5, %%rax \n\t"
"add %%rax, %1 \n\t"
"popcnt %6, %%rax \n\t"
"add %%rax, %2 \n\t"
"popcnt %7, %%rax \n\t"
"add %%rax, %3 \n\t"
: "+r" (c0), "+r" (c1), "+r" (c2), "+r" (c3)
: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
: "rax"
);
}
}
count = c0 + c1 + c2 + c3;
endP = chrono::system_clock::now();
duration=chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "Broken Chain\t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
free(charbuffer);
}
Run Code Online (Sandbox Code Playgroud)
同样有趣的基准可以在这里找到:http
://pastebin.com/kbzgL8si
这个基准测试改变popcnt了(假)依赖链中的s 数.
False Chain 0: 41959360000 0.57748 sec 18.1578 GB/s
False Chain 1: 41959360000 0.585398 sec 17.9122 GB/s
False Chain 2: 41959360000 0.645483 sec 16.2448 GB/s
False Chain 3: 41959360000 0.929718 sec 11.2784 GB/s
False Chain 4: 41959360000 1.23572 sec 8.48557 GB/s
Run Code Online (Sandbox Code Playgroud)
EOF*_*EOF 50
我编写了一个等效的C程序进行实验,我可以证实这种奇怪的行为.更重要的是,gcc相信64位整数(应该可能是一个size_t无论如何......)更好,因为使用uint_fast32_t导致gcc使用64位uint.
我对程序集进行了一些修改:
只需使用32位版本,将所有32位指令/寄存器替换为程序内部popcount循环中的64位版本.观察:代码和32位版本一样快!
这显然是一个hack,因为变量的大小不是真正的64位,因为程序的其他部分仍然使用32位版本,但只要内部popcount-loop主导性能,这是一个好的开始.
然后我从32位版本的程序中复制了内部循环代码,将其破解为64位,使用寄存器进行调整,使其成为64位版本内部循环的替代品.此代码的运行速度与32位版本一样快.
我的结论是,这是编译器的错误指令调度,而不是32位指令的实际速度/延迟优势.
(警告:我破坏了装配,可能在没有注意的情况下破坏了一些东西.我不这么认为.)
Non*_*upt 24
这不是答案,但如果我将结果置于评论中,则很难理解.
我用Mac Pro(Westmere 6-Cores Xeon 3.33 GHz)获得了这些结果.我编译它clang -O3 -msse4 -lstdc++ a.cpp -o a(-O2得到相同的结果).
uint64_t size=atol(argv[1])<<20;unsigned 41950110000 0.811198 sec 12.9263 GB/s
uint64_t 41950110000 0.622884 sec 16.8342 GB/s
Run Code Online (Sandbox Code Playgroud)
uint64_t size=1<<20;unsigned 41950110000 0.623406 sec 16.8201 GB/s
uint64_t 41950110000 0.623685 sec 16.8126 GB/s
Run Code Online (Sandbox Code Playgroud)
我也试过:
for相反的声明:for (uint64_t i=size/8;i>0;i-=4).这给出了相同的结果,并证明编译足够聪明,不会在每次迭代时将大小除以8(如预期的那样).这是我疯狂的猜测:
速度因素分为三个部分:
代码缓存:uint64_t版本具有更大的代码大小,但这对我的Xeon CPU没有影响.这使得64位版本变慢.
使用说明.不仅要注意循环计数,还要在两个版本上使用32位和64位索引访问缓冲区.访问具有64位偏移量的指针会请求专用的64位寄存器和寻址,而您可以立即使用32位偏移量.这可能会使32位版本更快.
指令仅在64位编译(即预取)上发出.这使得64位更快.
这三个因素共同与观察到的看似相互矛盾的结果相匹配.
Gen*_*ene 10
我无法给出权威的答案,但提供可能原因的概述.该参考文献非常清楚地表明,对于循环体中的指令,延迟和吞吐量之间存在3:1的比率.它还显示了多次发送的效果.由于在现代x86处理器中存在(给 - 取)三个整数单元,因此通常可以在每个周期发送三个指令.
因此,在峰值流水线和多个调度性能之间以及这些机制的失败之间,我们的性能因数为6.众所周知,x86指令集的复杂性使得很容易发生奇怪的破坏.上面的文档有一个很好的例子:
64位右移的Pentium 4性能非常差.64位左移以及所有32位移位都具有可接受的性能.似乎从ALU的高32位到低32位的数据路径没有很好地设计.
我个人遇到了一个奇怪的情况,在一个四核芯片的特定核心上,热循环运行得相当慢(如果我记得,AMD就是这样).实际上,通过关闭核心,我们在map-reduce计算上获得了更好的性能.
在这里,我的猜测是整数单位的争用:popcnt,循环计数器和地址计算都可以用32位宽的计数器全速运行,但64位计数器会导致争用和流水线停顿.由于总共只有大约12个周期,可能是4个周期,每个循环体执行多个调度,单个停顿可以合理地影响运行时间2倍.
使用静态变量引起的变化,我猜测只会导致指令的轻微重新排序,这是另一个线索,即32位代码处于争用的某个临界点.
我知道这不是一个严谨的分析,但这是一个似是而非的解释.
rcg*_*ldr 10
我尝试使用Visual Studio 2013 Express,使用指针而不是索引,这加快了一些过程.我怀疑这是因为寻址是偏移+寄存器,而不是偏移+寄存器+(寄存器<< 3).C++代码.
uint64_t* bfrend = buffer+(size/8);
uint64_t* bfrptr;
// ...
{
startP = chrono::system_clock::now();
count = 0;
for (unsigned k = 0; k < 10000; k++){
// Tight unrolled loop with uint64_t
for (bfrptr = buffer; bfrptr < bfrend;){
count += __popcnt64(*bfrptr++);
count += __popcnt64(*bfrptr++);
count += __popcnt64(*bfrptr++);
count += __popcnt64(*bfrptr++);
}
}
endP = chrono::system_clock::now();
duration = chrono::duration_cast<std::chrono::nanoseconds>(endP-startP).count();
cout << "uint64_t\t" << count << '\t' << (duration/1.0E9) << " sec \t"
<< (10000.0*size)/(duration) << " GB/s" << endl;
}
Run Code Online (Sandbox Code Playgroud)
汇编代码:r10 = bfrptr,r15 = bfrend,rsi = count,rdi = buffer,r13 = k:
$LL5@main:
mov r10, rdi
cmp rdi, r15
jae SHORT $LN4@main
npad 4
$LL2@main:
mov rax, QWORD PTR [r10+24]
mov rcx, QWORD PTR [r10+16]
mov r8, QWORD PTR [r10+8]
mov r9, QWORD PTR [r10]
popcnt rdx, rax
popcnt rax, rcx
add rdx, rax
popcnt rax, r8
add r10, 32
add rdx, rax
popcnt rax, r9
add rsi, rax
add rsi, rdx
cmp r10, r15
jb SHORT $LL2@main
$LN4@main:
dec r13
jne SHORT $LL5@main
Run Code Online (Sandbox Code Playgroud)
你有没有试过去-funroll-loops -fprefetch-loop-arraysGCC?
通过这些额外的优化,我得到以下结果:
[1829] /tmp/so_25078285 $ cat /proc/cpuinfo |grep CPU|head -n1
model name : Intel(R) Core(TM) i3-3225 CPU @ 3.30GHz
[1829] /tmp/so_25078285 $ g++ --version|head -n1
g++ (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3
[1829] /tmp/so_25078285 $ g++ -O3 -march=native -std=c++11 test.cpp -o test_o3
[1829] /tmp/so_25078285 $ g++ -O3 -march=native -funroll-loops -fprefetch-loop-arrays -std=c++11 test.cpp -o test_o3_unroll_loops__and__prefetch_loop_arrays
[1829] /tmp/so_25078285 $ ./test_o3 1
unsigned 41959360000 0.595 sec 17.6231 GB/s
uint64_t 41959360000 0.898626 sec 11.6687 GB/s
[1829] /tmp/so_25078285 $ ./test_o3_unroll_loops__and__prefetch_loop_arrays 1
unsigned 41959360000 0.618222 sec 16.9612 GB/s
uint64_t 41959360000 0.407304 sec 25.7443 GB/s
Run Code Online (Sandbox Code Playgroud)
您是否尝试过在循环外移动还原步骤?现在你有一个真正不需要的数据依赖.
尝试:
uint64_t subset_counts[4] = {};
for( unsigned k = 0; k < 10000; k++){
// Tight unrolled loop with unsigned
unsigned i=0;
while (i < size/8) {
subset_counts[0] += _mm_popcnt_u64(buffer[i]);
subset_counts[1] += _mm_popcnt_u64(buffer[i+1]);
subset_counts[2] += _mm_popcnt_u64(buffer[i+2]);
subset_counts[3] += _mm_popcnt_u64(buffer[i+3]);
i += 4;
}
}
count = subset_counts[0] + subset_counts[1] + subset_counts[2] + subset_counts[3];
Run Code Online (Sandbox Code Playgroud)
你也有一些奇怪的别名,我不确定是否符合严格的别名规则.
小智 5
TL; DR:__builtin改为使用内在函数.
我能够gcc通过使用__builtin_popcountll相同的汇编指令生成4.8.4(甚至是gcc.godbolt.org上的4.7.3)为此生成最佳代码,但没有那个错误依赖性错误.
我不是100%肯定我的基准测试代码,但objdump输出似乎分享我的观点.我使用其他一些技巧(++ivs i++)使编译器在没有任何movl指令的情况下为我展开循环(奇怪的行为,我必须说).
结果:
Count: 20318230000 Elapsed: 0.411156 seconds Speed: 25.503118 GB/s
Run Code Online (Sandbox Code Playgroud)
基准代码:
#include <stdint.h>
#include <stddef.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
uint64_t builtin_popcnt(const uint64_t* buf, size_t len){
uint64_t cnt = 0;
for(size_t i = 0; i < len; ++i){
cnt += __builtin_popcountll(buf[i]);
}
return cnt;
}
int main(int argc, char** argv){
if(argc != 2){
printf("Usage: %s <buffer size in MB>\n", argv[0]);
return -1;
}
uint64_t size = atol(argv[1]) << 20;
uint64_t* buffer = (uint64_t*)malloc((size/8)*sizeof(*buffer));
// Spoil copy-on-write memory allocation on *nix
for (size_t i = 0; i < (size / 8); i++) {
buffer[i] = random();
}
uint64_t count = 0;
clock_t tic = clock();
for(size_t i = 0; i < 10000; ++i){
count += builtin_popcnt(buffer, size/8);
}
clock_t toc = clock();
printf("Count: %lu\tElapsed: %f seconds\tSpeed: %f GB/s\n", count, (double)(toc - tic) / CLOCKS_PER_SEC, ((10000.0*size)/(((double)(toc - tic)*1e+9) / CLOCKS_PER_SEC)));
return 0;
}
Run Code Online (Sandbox Code Playgroud)
编译选项:
gcc --std=gnu99 -mpopcnt -O3 -funroll-loops -march=native bench.c -o bench
Run Code Online (Sandbox Code Playgroud)
GCC版本:
gcc (Ubuntu 4.8.4-2ubuntu1~14.04.1) 4.8.4
Run Code Online (Sandbox Code Playgroud)
Linux内核版本:
3.19.0-58-generic
Run Code Online (Sandbox Code Playgroud)
CPU信息:
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 70
model name : Intel(R) Core(TM) i7-4870HQ CPU @ 2.50 GHz
stepping : 1
microcode : 0xf
cpu MHz : 2494.226
cache size : 6144 KB
physical id : 0
siblings : 1
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx rdtscp lm constant_tsc nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm arat pln pts dtherm fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 invpcid xsaveopt
bugs :
bogomips : 4988.45
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
power management:
Run Code Online (Sandbox Code Playgroud)
这不是答案,而是对 2021 年少数编译器的反馈。在英特尔 CoffeeLake 9900k 上。
使用 Microsoft 编译器 (VS2019),工具集 v142:
Run Code Online (Sandbox Code Playgroud)unsigned 209695540000 1.8322 sec 28.6152 GB/s uint64_t 209695540000 3.08764 sec 16.9802 GB/s
使用英特尔编译器 2021:
Run Code Online (Sandbox Code Playgroud)unsigned 209695540000 1.70845 sec 30.688 GB/s uint64_t 209695540000 1.57956 sec 33.1921 GB/s
根据 Mysticial 的回答,Intel 编译器知道 False Data Dependency,但不知道 Microsoft 编译器。
对于英特尔编译器,我使用/QxHost(优化主机架构的 CPU 架构)/Oi(启用内部功能)而#include <nmmintrin.h>不是#include <immintrin.h>.
完整编译命令:/GS /W3 /QxHost /Gy /Zi /O2 /D "NDEBUG" /D "_CONSOLE" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" //fprofile-instr-use "x64\Release\" /Fp"x64\Release\Benchmark.pch" .
来自 ICC 的反编译(由 IDA 7.5)程序集:
int __cdecl main(int argc, const char **argv, const char **envp)
{
int v6; // er13
_BYTE *v8; // rsi
unsigned int v9; // edi
unsigned __int64 i; // rbx
unsigned __int64 v11; // rdi
int v12; // ebp
__int64 v13; // r14
__int64 v14; // rbx
unsigned int v15; // eax
unsigned __int64 v16; // rcx
unsigned int v17; // eax
unsigned __int64 v18; // rcx
__int64 v19; // rdx
unsigned int v20; // eax
int result; // eax
std::ostream *v23; // rbx
char v24; // dl
std::ostream *v33; // rbx
std::ostream *v41; // rbx
__int64 v42; // rdx
unsigned int v43; // eax
int v44; // ebp
__int64 v45; // r14
__int64 v46; // rbx
unsigned __int64 v47; // rax
unsigned __int64 v48; // rax
std::ostream *v50; // rdi
char v51; // dl
std::ostream *v58; // rdi
std::ostream *v60; // rdi
__int64 v61; // rdx
unsigned int v62; // eax
__asm
{
vmovdqa [rsp+98h+var_58], xmm8
vmovapd [rsp+98h+var_68], xmm7
vmovapd [rsp+98h+var_78], xmm6
}
if ( argc == 2 )
{
v6 = atol(argv[1]) << 20;
_R15 = v6;
v8 = operator new[](v6);
if ( v6 )
{
v9 = 1;
for ( i = 0i64; i < v6; i = v9++ )
v8[i] = rand();
}
v11 = (unsigned __int64)v6 >> 3;
v12 = 0;
v13 = Xtime_get_ticks_0();
v14 = 0i64;
do
{
if ( v6 )
{
v15 = 4;
v16 = 0i64;
do
{
v14 += __popcnt(*(_QWORD *)&v8[8 * v16])
+ __popcnt(*(_QWORD *)&v8[8 * v15 - 24])
+ __popcnt(*(_QWORD *)&v8[8 * v15 - 16])
+ __popcnt(*(_QWORD *)&v8[8 * v15 - 8]);
v16 = v15;
v15 += 4;
}
while ( v11 > v16 );
v17 = 4;
v18 = 0i64;
do
{
v14 += __popcnt(*(_QWORD *)&v8[8 * v18])
+ __popcnt(*(_QWORD *)&v8[8 * v17 - 24])
+ __popcnt(*(_QWORD *)&v8[8 * v17 - 16])
+ __popcnt(*(_QWORD *)&v8[8 * v17 - 8]);
v18 = v17;
v17 += 4;
}
while ( v11 > v18 );
}
v12 += 2;
}
while ( v12 != 10000 );
_RBP = 100 * (Xtime_get_ticks_0() - v13);
std::operator___std::char_traits_char___(std::cout, "unsigned\t");
v23 = (std::ostream *)std::ostream::operator<<(std::cout, v14);
std::operator___std::char_traits_char____0(v23, v24);
__asm
{
vmovq xmm0, rbp
vmovdqa xmm8, cs:__xmm@00000000000000004530000043300000
vpunpckldq xmm0, xmm0, xmm8
vmovapd xmm7, cs:__xmm@45300000000000004330000000000000
vsubpd xmm0, xmm0, xmm7
vpermilpd xmm1, xmm0, 1
vaddsd xmm6, xmm1, xmm0
vdivsd xmm1, xmm6, cs:__real@41cdcd6500000000
}
v33 = (std::ostream *)std::ostream::operator<<(v23);
std::operator___std::char_traits_char___(v33, " sec \t");
__asm
{
vmovq xmm0, r15
vpunpckldq xmm0, xmm0, xmm8
vsubpd xmm0, xmm0, xmm7
vpermilpd xmm1, xmm0, 1
vaddsd xmm0, xmm1, xmm0
vmulsd xmm7, xmm0, cs:__real@40c3880000000000
vdivsd xmm1, xmm7, xmm6
}
v41 = (std::ostream *)std::ostream::operator<<(v33);
std::operator___std::char_traits_char___(v41, " GB/s");
LOBYTE(v42) = 10;
v43 = std::ios::widen((char *)v41 + *(int *)(*(_QWORD *)v41 + 4i64), v42);
std::ostream::put(v41, v43);
std::ostream::flush(v41);
v44 = 0;
v45 = Xtime_get_ticks_0();
v46 = 0i64;
do
{
if ( v6 )
{
v47 = 0i64;
do
{
v46 += __popcnt(*(_QWORD *)&v8[8 * v47])
+ __popcnt(*(_QWORD *)&v8[8 * v47 + 8])
+ __popcnt(*(_QWORD *)&v8[8 * v47 + 16])
+ __popcnt(*(_QWORD *)&v8[8 * v47 + 24]);
v47 += 4i64;
}
while ( v47 < v11 );
v48 = 0i64;
do
{
v46 += __popcnt(*(_QWORD *)&v8[8 * v48])
+ __popcnt(*(_QWORD *)&v8[8 * v48 + 8])
+ __popcnt(*(_QWORD *)&v8[8 * v48 + 16])
+ __popcnt(*(_QWORD *)&v8[8 * v48 + 24]);
v48 += 4i64;
}
while ( v48 < v11 );
}
v44 += 2;
}
while ( v44 != 10000 );
_RBP = 100 * (Xtime_get_ticks_0() - v45);
std::operator___std::char_traits_char___(std::cout, "uint64_t\t");
v50 = (std::ostream *)std::ostream::operator<<(std::cout, v46);
std::operator___std::char_traits_char____0(v50, v51);
__asm
{
vmovq xmm0, rbp
vpunpckldq xmm0, xmm0, cs:__xmm@00000000000000004530000043300000
vsubpd xmm0, xmm0, cs:__xmm@45300000000000004330000000000000
vpermilpd xmm1, xmm0, 1
vaddsd xmm6, xmm1, xmm0
vdivsd xmm1, xmm6, cs:__real@41cdcd6500000000
}
v58 = (std::ostream *)std::ostream::operator<<(v50);
std::operator___std::char_traits_char___(v58, " sec \t");
__asm { vdivsd xmm1, xmm7, xmm6 }
v60 = (std::ostream *)std::ostream::operator<<(v58);
std::operator___std::char_traits_char___(v60, " GB/s");
LOBYTE(v61) = 10;
v62 = std::ios::widen((char *)v60 + *(int *)(*(_QWORD *)v60 + 4i64), v61);
std::ostream::put(v60, v62);
std::ostream::flush(v60);
free(v8);
result = 0;
}
else
{
std::operator___std::char_traits_char___(std::cerr, "usage: array_size in MB");
LOBYTE(v19) = 10;
v20 = std::ios::widen((char *)&std::cerr + *((int *)std::cerr + 1), v19);
std::ostream::put(std::cerr, v20);
std::ostream::flush(std::cerr);
result = -1;
}
__asm
{
vmovaps xmm6, [rsp+98h+var_78]
vmovaps xmm7, [rsp+98h+var_68]
vmovaps xmm8, [rsp+98h+var_58]
}
return result;
}
Run Code Online (Sandbox Code Playgroud)
和主要的拆卸:
.text:0140001000 .686p
.text:0140001000 .mmx
.text:0140001000 .model flat
.text:0140001000
.text:0140001000 ; ===========================================================================
.text:0140001000
.text:0140001000 ; Segment type: Pure code
.text:0140001000 ; Segment permissions: Read/Execute
.text:0140001000 _text segment para public 'CODE' use64
.text:0140001000 assume cs:_text
.text:0140001000 ;org 140001000h
.text:0140001000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
.text:0140001000
.text:0140001000 ; =============== S U B R O U T I N E =======================================
.text:0140001000
.text:0140001000
.text:0140001000 ; int __cdecl main(int argc, const char **argv, const char **envp)
.text:0140001000 main proc near ; CODE XREF: __scrt_common_main_seh+107?p
.text:0140001000 ; DATA XREF: .pdata:ExceptionDir?o
.text:0140001000
.text:0140001000 var_78 = xmmword ptr -78h
.text:0140001000 var_68 = xmmword ptr -68h
.text:0140001000 var_58 = xmmword ptr -58h
.text:0140001000
.text:0140001000 push r15
.text:0140001002 push r14
.text:0140001004 push r13
.text:0140001006 push r12
.text:0140001008 push rsi
.text:0140001009 push rdi
.text:014000100A push rbp
.text:014000100B push rbx
.text:014000100C sub rsp, 58h
.text:0140001010 vmovdqa [rsp+98h+var_58], xmm8
.text:0140001016 vmovapd [rsp+98h+var_68], xmm7
.text:014000101C vmovapd [rsp+98h+var_78], xmm6
.text:0140001022 cmp ecx, 2
.text:0140001025 jnz loc_14000113E
.text:014000102B mov rcx, [rdx+8] ; String
.text:014000102F call cs:__imp_atol
.text:0140001035 mov r13d, eax
.text:0140001038 shl r13d, 14h
.text:014000103C movsxd r15, r13d
.text:014000103F mov rcx, r15 ; size
.text:0140001042 call ??_U@YAPEAX_K@Z ; operator new[](unsigned __int64)
.text:0140001047 mov rsi, rax
.text:014000104A test r15d, r15d
.text:014000104D jz short loc_14000106E
.text:014000104F mov edi, 1
.text:0140001054 xor ebx, ebx
.text:0140001056 mov rbp, cs:__imp_rand
.text:014000105D nop dword ptr [rax]
.text:0140001060
.text:0140001060 loc_140001060: ; CODE XREF: main+6C?j
.text:0140001060 call rbp ; __imp_rand
.text:0140001062 mov [rsi+rbx], al
.text:0140001065 mov ebx, edi
.text:0140001067 inc edi
.text:0140001069 cmp rbx, r15
.text:014000106C jb short loc_140001060
.text:014000106E
.text:014000106E loc_14000106E: ; CODE XREF: main+4D?j
.text:014000106E mov rdi, r15
.text:0140001071 shr rdi, 3
.text:0140001075 xor ebp, ebp
.text:0140001077 call _Xtime_get_ticks_0
.text:014000107C mov r14, rax
.text:014000107F xor ebx, ebx
.text:0140001081 jmp short loc_14000109F
.text:0140001081 ; ---------------------------------------------------------------------------
.text:0140001083 align 10h
.text:0140001090
.text:0140001090 loc_140001090: ; CODE XREF: main+A2?j
.text:0140001090 ; main+EC?j ...
.text:0140001090 add ebp, 2
.text:0140001093 cmp ebp, 2710h
.text:0140001099 jz loc_140001184
.text:014000109F
.text:014000109F loc_14000109F: ; CODE XREF: main+81?j
.text:014000109F test r13d, r13d
.text:01400010A2 jz short loc_140001090
.text:01400010A4 mov eax, 4
.text:01400010A9 xor ecx, ecx
.text:01400010AB nop dword ptr [rax+rax+00h]
.text:01400010B0
.text:01400010B0 loc_1400010B0: ; CODE XREF: main+E7?j
.text:01400010B0 popcnt rcx, qword ptr [rsi+rcx*8]
.text:01400010B6 add rcx, rbx
.text:01400010B9 lea edx, [rax-3]
.text:01400010BC popcnt rdx, qword ptr [rsi+rdx*8]
.text:01400010C2 add rdx, rcx
.text:01400010C5 lea ecx, [rax-2]
.text:01400010C8 popcnt rcx, qword ptr [rsi+rcx*8]
.text:01400010CE add rcx, rdx
.text:01400010D1 lea edx, [rax-1]
.text:01400010D4 xor ebx, ebx
.text:01400010D6 popcnt rbx, qword ptr [rsi+rdx*8]
.text:01400010DC add rbx, rcx
.text:01400010DF mov ecx, eax
.text:01400010E1 add eax, 4
.text:01400010E4 cmp rdi, rcx
.text:01400010E7 ja short loc_1400010B0
.text:01400010E9 test r13d, r13d
.text:01400010EC jz short loc_140001090
.text:01400010EE mov eax, 4
.text:01400010F3 xor ecx, ecx
.text:01400010F5 db 2Eh
.text:01400010F5 nop word ptr [rax+rax+00000000h]
.text:01400010FF nop
.text:0140001100
.text:0140001100 loc_140001100: ; CODE XREF: main+137?j
.text:0140001100 popcnt rcx, qword ptr [rsi+rcx*8]
.text:0140001106 add rcx, rbx
.text:0140001109 lea edx, [rax-3]
.text:014000110C popcnt rdx, qword ptr [rsi+rdx*8]
.text:0140001112 add rdx, rcx
.text:0140001115 lea ecx, [rax-2]
.text:0140001118 popcnt rcx, qword ptr [rsi+rcx*8]
.text:014000111E add rcx, rdx
.text:0140001121 lea edx, [rax-1]
.text:0140001124 xor ebx, ebx
.text:0140001126 popcnt rbx, qword ptr [rsi+rdx*8]
.text:014000112C add rbx, rcx
.text:014000112F mov ecx, eax
.text:0140001131 add eax, 4
.text:0140001134 cmp rdi, rcx
.text:0140001137 ja short loc_140001100
.text:0140001139 jmp loc_140001090
.text:014000113E ; ---------------------------------------------------------------------------
.text:014000113E
.text:014000113E loc_14000113E: ; CODE XREF: main+25?j
.text:014000113E mov rsi, cs:__imp_?cerr@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::ostream std::cerr
.text:0140001145 lea rdx, aUsageArraySize ; "usage: array_size in MB"
.text:014000114C mov rcx, rsi ; std::ostream *
.text:014000114F call std__operator___std__char_traits_char___
.text:0140001154 mov rax, [rsi]
.text:0140001157 movsxd rcx, dword ptr [rax+4]
.text:014000115B add rcx, rsi
.text:014000115E mov dl, 0Ah
.text:0140001160 call cs:__imp_?widen@?$basic_ios@DU?$char_traits@D@std@@@std@@QEBADD@Z ; std::ios::widen(char)
.text:0140001166 mov rcx, rsi
.text:0140001169 mov edx, eax
.text:014000116B call cs:__imp_?put@?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV12@D@Z ; std::ostream::put(char)
.text:0140001171 mov rcx, rsi
.text:0140001174 call cs:__imp_?flush@?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV12@XZ ; std::ostream::flush(void)
.text:014000117A mov eax, 0FFFFFFFFh
.text:014000117F jmp loc_1400013E2
.text:0140001184 ; ---------------------------------------------------------------------------
.text:0140001184
.text:0140001184 loc_140001184: ; CODE XREF: main+99?j
.text:0140001184 call _Xtime_get_ticks_0
.text:0140001189 sub rax, r14
.text:014000118C imul rbp, rax, 64h ; 'd'
.text:0140001190 mov r14, cs:__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::ostream std::cout
.text:0140001197 lea rdx, aUnsigned ; "unsigned\t"
.text:014000119E mov rcx, r14 ; std::ostream *
.text:01400011A1 call std__operator___std__char_traits_char___
.text:01400011A6 mov rcx, r14
.text:01400011A9 mov rdx, rbx
.text:01400011AC call cs:__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@_K@Z ; std::ostream::operator<<(unsigned __int64)
.text:01400011B2 mov rbx, rax
.text:01400011B5 mov rcx, rax ; std::ostream *
.text:01400011B8 call std__operator___std__char_traits_char____0
.text:01400011BD vmovq xmm0, rbp
.text:01400011C2 vmovdqa xmm8, cs:__xmm@00000000000000004530000043300000
.text:01400011CA vpunpckldq xmm0, xmm0, xmm8
.text:01400011CF vmovapd xmm7, cs:__xmm@45300000000000004330000000000000
.text:01400011D7 vsubpd xmm0, xmm0, xmm7
.text:01400011DB vpermilpd xmm1, xmm0, 1
.text:01400011E1 vaddsd xmm6, xmm1, xmm0
.text:01400011E5 vdivsd xmm1, xmm6, cs:__real@41cdcd6500000000
.text:01400011ED mov r12, cs:__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@N@Z ; std::ostream::operator<<(double)
.text:01400011F4 mov rcx, rbx
.text:01400011F7 call r12 ; std::ostream::operator<<(double) ; std::ostream::operator<<(double)
.text:01400011FA mov rbx, rax
.text:01400011FD lea rdx, aSec ; " sec \t"
.text:0140001204 mov rcx, rax ; std::ostream *
.text:0140001207 call std__operator___std__char_traits_char___
.text:014000120C vmovq xmm0, r15
.text:0140001211 vpunpckldq xmm0, xmm0, xmm8
.text:0140001216 vsubpd xmm0, xmm0, xmm7
.text:014000121A vpermilpd xmm1, xmm0, 1
.text:0140001220 vaddsd xmm0, xmm1, xmm0
.text:0140001224 vmulsd xmm7, xmm0, cs:__real@40c3880000000000
.text:014000122C vdivsd xmm1, xmm7, xmm6
.text:0140001230 mov rcx, rbx
.text:0140001233 call r12 ; std::ostream::operator<<(double) ; std::ostream::operator<<(double)
.text:0140001236 mov rbx, rax
.text:0140001239 lea rdx, aGbS ; " GB/s"
.text:0140001240 mov rcx, rax ; std::ostream *
.text:0140001243 call std__operator___std__char_traits_char___
.text:0140001248 mov rax, [rbx]
.text:014000124B movsxd rcx, dword ptr [rax+4]
.text:014000124F add rcx, rbx
.text:0140001252 mov dl, 0Ah
.text:0140001254 call cs:__imp_?widen@?$basic_ios@DU?$char_traits@D@std@@@std@@QEBADD@Z ; std::ios::widen(char)
.text:014000125A mov rcx, rbx
.text:014000125D mov edx, eax
.text:014000125F call cs:__imp_?put@?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV12@D@Z ; std::ostream::put(char)
.text:0140001265 mov rcx, rbx
.text:0140001268 call cs:__imp_?flush@?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV12@XZ ; std::ostream::flush(void)
.text:014000126E xor ebp, ebp
.text:0140001270 call _Xtime_get_ticks_0
.text:0140001275 mov r14, rax
.text:0140001278 xor ebx, ebx
.text:014000127A jmp short loc_14000128F
.text:014000127A ; ---------------------------------------------------------------------------
.text:014000127C align 20h
.text:0140001280
.text:0140001280 loc_140001280: ; CODE XREF: main+292?j
.text:0140001280 ; main+2DB?j ...
.text:0140001280 add ebp, 2
.text:0140001283 cmp ebp, 2710h
.text:0140001289 jz loc_14000131D
.text:014000128F
.text:014000128F loc_14000128F: ; CODE XREF: main+27A?j
.text:014000128F test r13d, r13d
.text:0140001292 jz short loc_140001280
.text:0140001294 xor eax, eax
.text:0140001296 db 2Eh
.text:0140001296 nop word ptr [rax+rax+00000000h]
.text:01400012A0
.text:01400012A0 loc_1400012A0: ; CODE XREF: main+2D6?j
.text:01400012A0 xor ecx, ecx
.text:01400012A2 popcnt rcx, qword ptr [rsi+rax*8]
.text:01400012A8 add rcx, rbx
.text:01400012AB xor edx, edx
.text:01400012AD popcnt rdx, qword ptr [rsi+rax*8+8]
.text:01400012B4 add rdx, rcx
.text:01400012B7 xor ecx, ecx
.text:01400012B9 popcnt rcx, qword ptr [rsi+rax*8+10h]
.text:01400012C0 add rcx, rdx
.text:01400012C3 xor ebx, ebx
.text:01400012C5 popcnt rbx, qword ptr [rsi+rax*8+18h]
.text:01400012CC add rbx, rcx
.text:01400012CF add rax, 4
.text:01400012D3 cmp rax, rdi
.text:01400012D6 jb short loc_1400012A0
.text:01400012D8 test r13d, r13d
.text:01400012DB jz short loc_140001280
.text:01400012DD xor eax, eax
.text:01400012DF nop
.text:01400012E0
.text:01400012E0 loc_1400012E0: ; CODE XREF: main+316?j
.text:01400012E0 xor ecx, ecx
.text:01400012E2 popcnt rcx, qword ptr [rsi+rax*8]
.text:01400012E8 add rcx, rbx
.text:01400012EB xor edx, edx
.text:01400012ED popcnt rdx, qword ptr [rsi+rax*8+8]
.text:01400012F4 add rdx, rcx
.text:01400012F7 xor ecx, ecx
.text:01400012F9 popcnt rcx, qword ptr [rsi+rax*8+10h]
.text:0140001300 add rcx, rdx
.text:0140001303 xor ebx, ebx
.text:0140001305 popcnt rbx, qword ptr [rsi+rax*8+18h]
.text:014000130C add rbx, rcx
.text:014000130F add rax, 4
.text:0140001313 cmp rax, rdi
.text:0140001316 jb short loc_1400012E0
.text:0140001318 jmp loc_140001280
.text:014000131D ; ---------------------------------------------------------------------------
.text:014000131D
.text:014000131D loc_14000131D: ; CODE XREF: main+289?j
.text:014000131D call _Xtime_get_ticks_0
.text:0140001322 sub rax, r14
.text:0140001325 imul rbp, rax, 64h ; 'd'
.text:0140001329 mov rdi, cs:__imp_?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::ostream std::cout
.text:0140001330 lea rdx, aUint64T ; "uint64_t\t"
.text:0140001337 mov rcx, rdi ; std::ostream *
.text:014000133A call std__operator___std__char_traits_char___
.text:014000133F mov rcx, rdi
.text:0140001342 mov rdx, rbx
.text:0140001345 call cs:__imp_??6?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@_K@Z ;
| 归档时间: |
|
| 查看次数: |
152929 次 |
| 最近记录: |