Pau*_*aul 26
你应该用stride_tricks.当我第一次看到这个时,"魔法"这个词就浮现在脑海中.它很简单,是迄今为止最快的方法.
>>> as_strided = numpy.lib.stride_tricks.as_strided
>>> a = numpy.arange(1,15)
>>> a
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
>>> b = as_strided(a, (11,4), a.strides*2)
>>> b
array([[ 1, 2, 3, 4],
[ 2, 3, 4, 5],
[ 3, 4, 5, 6],
[ 4, 5, 6, 7],
[ 5, 6, 7, 8],
[ 6, 7, 8, 9],
[ 7, 8, 9, 10],
[ 8, 9, 10, 11],
[ 9, 10, 11, 12],
[10, 11, 12, 13],
[11, 12, 13, 14]])
Run Code Online (Sandbox Code Playgroud)
请注意,数组b中的值是以a不同的方式查看的.做一个.copy()上b,如果你打算修改它.
我在SciPy会议上看到了这一点.以下是幻灯片以获得更多解释.
Joh*_*ooy 16
最快的方法似乎是预分配数组,在本答案的底部作为选项7给出.
>>> import numpy as np
>>> A=np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
>>> A
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
>>> np.array(zip(A,A[1:],A[2:],A[3:]))
array([[ 1, 2, 3, 4],
[ 2, 3, 4, 5],
[ 3, 4, 5, 6],
[ 4, 5, 6, 7],
[ 5, 6, 7, 8],
[ 6, 7, 8, 9],
[ 7, 8, 9, 10],
[ 8, 9, 10, 11],
[ 9, 10, 11, 12],
[10, 11, 12, 13],
[11, 12, 13, 14]])
>>>
Run Code Online (Sandbox Code Playgroud)
您可以轻松地对此进行调整以实现可变块大小.
>>> n=5
>>> np.array(zip(*(A[i:] for i in range(n))))
array([[ 1, 2, 3, 4, 5],
[ 2, 3, 4, 5, 6],
[ 3, 4, 5, 6, 7],
[ 4, 5, 6, 7, 8],
[ 5, 6, 7, 8, 9],
[ 6, 7, 8, 9, 10],
[ 7, 8, 9, 10, 11],
[ 8, 9, 10, 11, 12],
[ 9, 10, 11, 12, 13],
[10, 11, 12, 13, 14]])
Run Code Online (Sandbox Code Playgroud)
您可能希望比较此和使用之间的性能itertools.islice.
>>> from itertools import islice
>>> n=4
>>> np.array(zip(*[islice(A,i,None) for i in range(n)]))
array([[ 1, 2, 3, 4],
[ 2, 3, 4, 5],
[ 3, 4, 5, 6],
[ 4, 5, 6, 7],
[ 5, 6, 7, 8],
[ 6, 7, 8, 9],
[ 7, 8, 9, 10],
[ 8, 9, 10, 11],
[ 9, 10, 11, 12],
[10, 11, 12, 13],
[11, 12, 13, 14]])
Run Code Online (Sandbox Code Playgroud)
1. timeit np.array(zip(A,A[1:],A[2:],A[3:]))
10000 loops, best of 3: 92.9 us per loop
2. timeit np.array(zip(*(A[i:] for i in range(4))))
10000 loops, best of 3: 101 us per loop
3. timeit np.array(zip(*[islice(A,i,None) for i in range(4)]))
10000 loops, best of 3: 101 us per loop
4. timeit numpy.array([ A[i:i+4] for i in range(len(A)-3) ])
10000 loops, best of 3: 37.8 us per loop
5. timeit numpy.array(list(chunks(A, 4)))
10000 loops, best of 3: 43.2 us per loop
6. timeit numpy.array(byN(A, 4))
10000 loops, best of 3: 100 us per loop
# Does preallocation of the array help? (11 is from len(A)+1-4)
7. timeit B=np.zeros(shape=(11, 4),dtype=np.int32)
100000 loops, best of 3: 2.19 us per loop
timeit for i in range(4):B[:,i]=A[i:11+i]
10000 loops, best of 3: 20.9 us per loop
total 23.1us per loop
Run Code Online (Sandbox Code Playgroud)
随着len(A)增加(20000)4和5收敛到等效速度(44ms).1,2,3和6都保持慢约3倍(135毫秒).7更快(1.36毫秒).
| 归档时间: |
|
| 查看次数: |
6569 次 |
| 最近记录: |