在Scala中,可以在其他方法中定义方法.这将它们的使用范围限制在定义块内.我使用它们来提高使用几个高阶函数的代码的可读性.与匿名函数文字相比,这允许我在传递它们之前给它们有意义的名称.
例如:
class AggregatedPerson extends HashSet[PersonRecord] {
def mostFrequentName: String = {
type NameCount = (String, Int)
def moreFirst(a: NameCount, b: NameCount) = a._2 > b._2
def countOccurrences(nameGroup: (String, List[PersonRecord])) =
(nameGroup._1, nameGroup._2.size)
iterator.toList.groupBy(_.fullName).
map(countOccurrences).iterator.toList.
sortWith(moreFirst).head._1
}
}
Run Code Online (Sandbox Code Playgroud)
是否有任何运行时成本,因为我应该知道嵌套方法定义?
关闭的答案有何不同?
ret*_*nym 57
期间compilaton,嵌套功能moveFirst和countOccurences移出到相同的水平mostFrequentName.他们得到编译器合成的名称:moveFirst$1和countOccurences$1.
此外,当您在没有参数列表的情况下引用其中一种方法时,它将被提升为一个函数.所以map(countOccurences)和写作一样map((a: (String, List[PersonRecord])) => countOccurences(a)).这个匿名函数被编译成一个单独的类AggregatedPerson$$anonfun$mostFrequentName$2,除了转发之外什么也没做countOccurences$.
作为旁注,将方法提升为函数的过程称为Eta Expansion.如果在期望函数类型的上下文中省略参数列表(如在您的示例中),或者如果您使用_代替整个参数列表,或者代替每个参数(val f1 = countOccurences _ ; val f2 = countOccurences(_).
如果代码直接在闭包中,那么堆栈中的方法调用将减少一个,并且生成的合成方法会少一个.在大多数情况下,这对性能的影响可能为零.
我发现它是构建代码的一个非常有用的工具,并认为你的例子非常惯用Scala.
另一个有用的工具是使用小块来初始化val:
val a = {
val temp1, temp2 = ...
f(temp1, temp2)
}
Run Code Online (Sandbox Code Playgroud)
您可以使用scalac -print以确切地了解Scala代码如何转换为为JVM准备好的表单.下面是程序的输出:
[[syntax trees at end of cleanup]]// Scala source: nested-method.scala
package <empty> {
class AggregatedPerson extends scala.collection.mutable.HashSet with ScalaObject {
def mostFrequentName(): java.lang.String = AggregatedPerson.this.iterator().toList().groupBy({
(new AggregatedPerson$$anonfun$mostFrequentName$1(AggregatedPerson.this): Function1)
}).map({
{
(new AggregatedPerson$$anonfun$mostFrequentName$2(AggregatedPerson.this): Function1)
}
}, collection.this.Map.canBuildFrom()).$asInstanceOf[scala.collection.MapLike]().iterator().toList().sortWith({
{
(new AggregatedPerson$$anonfun$mostFrequentName$3(AggregatedPerson.this): Function2)
}
}).$asInstanceOf[scala.collection.IterableLike]().head().$asInstanceOf[Tuple2]()._1().$asInstanceOf[java.lang.String]();
final def moreFirst$1(a: Tuple2, b: Tuple2): Boolean = scala.Int.unbox(a._2()).>(scala.Int.unbox(b._2()));
final def countOccurrences$1(nameGroup: Tuple2): Tuple2 = new Tuple2(nameGroup._1(), scala.Int.box(nameGroup._2().$asInstanceOf[scala.collection.SeqLike]().size()));
def this(): AggregatedPerson = {
AggregatedPerson.super.this();
()
}
};
@SerialVersionUID(0) @serializable final <synthetic> class AggregatedPerson$$anonfun$mostFrequentName$1 extends scala.runtime.AbstractFunction1 {
final def apply(x$1: PersonRecord): java.lang.String = x$1.fullName();
final <bridge> def apply(v1: java.lang.Object): java.lang.Object = AggregatedPerson$$anonfun$mostFrequentName$1.this.apply(v1.$asInstanceOf[PersonRecord]());
def this($outer: AggregatedPerson): AggregatedPerson$$anonfun$mostFrequentName$1 = {
AggregatedPerson$$anonfun$mostFrequentName$1.super.this();
()
}
};
@SerialVersionUID(0) @serializable final <synthetic> class AggregatedPerson$$anonfun$mostFrequentName$2 extends scala.runtime.AbstractFunction1 {
final def apply(nameGroup: Tuple2): Tuple2 = AggregatedPerson$$anonfun$mostFrequentName$2.this.$outer.countOccurrences$1(nameGroup);
<synthetic> <paramaccessor> private[this] val $outer: AggregatedPerson = _;
final <bridge> def apply(v1: java.lang.Object): java.lang.Object = AggregatedPerson$$anonfun$mostFrequentName$2.this.apply(v1.$asInstanceOf[Tuple2]());
def this($outer: AggregatedPerson): AggregatedPerson$$anonfun$mostFrequentName$2 = {
if ($outer.eq(null))
throw new java.lang.NullPointerException()
else
AggregatedPerson$$anonfun$mostFrequentName$2.this.$outer = $outer;
AggregatedPerson$$anonfun$mostFrequentName$2.super.this();
()
}
};
@SerialVersionUID(0) @serializable final <synthetic> class AggregatedPerson$$anonfun$mostFrequentName$3 extends scala.runtime.AbstractFunction2 {
final def apply(a: Tuple2, b: Tuple2): Boolean = AggregatedPerson$$anonfun$mostFrequentName$3.this.$outer.moreFirst$1(a, b);
<synthetic> <paramaccessor> private[this] val $outer: AggregatedPerson = _;
final <bridge> def apply(v1: java.lang.Object, v2: java.lang.Object): java.lang.Object = scala.Boolean.box(AggregatedPerson$$anonfun$mostFrequentName$3.this.apply(v1.$asInstanceOf[Tuple2](), v2.$asInstanceOf[Tuple2]()));
def this($outer: AggregatedPerson): AggregatedPerson$$anonfun$mostFrequentName$3 = {
if ($outer.eq(null))
throw new java.lang.NullPointerException()
else
AggregatedPerson$$anonfun$mostFrequentName$3.this.$outer = $outer;
AggregatedPerson$$anonfun$mostFrequentName$3.super.this();
()
}
}
}
Run Code Online (Sandbox Code Playgroud)
Rex*_*err 14
运行时成本很低.你可以在这里观察它(为长代码道歉):
object NestBench {
def countRaw() = {
var sum = 0
var i = 0
while (i<1000) {
sum += i
i += 1
var j = 0
while (j<1000) {
sum += j
j += 1
var k = 0
while (k<1000) {
sum += k
k += 1
sum += 1
}
}
}
sum
}
def countClosure() = {
var sum = 0
var i = 0
def sumI {
sum += i
i += 1
var j = 0
def sumJ {
sum += j
j += 1
var k = 0
def sumK {
def sumL { sum += 1 }
sum += k
k += 1
sumL
}
while (k<1000) sumK
}
while (j<1000) sumJ
}
while (i<1000) sumI
sum
}
def countInner() = {
var sum = 0
def whileI = {
def whileJ = {
def whileK = {
def whileL() = 1
var ksum = 0
var k = 0
while (k<1000) { ksum += k; k += 1; ksum += whileL }
ksum
}
var jsum = 0
var j = 0
while (j<1000) {
jsum += j; j += 1
jsum += whileK
}
jsum
}
var isum = 0
var i = 0
while (i<1000) {
isum += i; i += 1
isum += whileJ
}
isum
}
whileI
}
def countFunc() = {
def summer(f: => Int)() = {
var sum = 0
var i = 0
while (i<1000) {
sum += i; i += 1
sum += f
}
sum
}
summer( summer( summer(1) ) )()
}
def nsPerIteration(f:() => Int): (Int,Double) = {
val t0 = System.nanoTime
val result = f()
val t1 = System.nanoTime
(result , (t1-t0)*1e-9)
}
def main(args: Array[String]) {
for (i <- 1 to 5) {
val fns = List(countRaw _, countClosure _, countInner _, countFunc _)
val labels = List("raw","closure","inner","func")
val results = (fns zip labels) foreach (fl => {
val x = nsPerIteration( fl._1 )
printf("Method %8s produced %d; time/it = %.3f ns\n",fl._2,x._1,x._2)
})
}
}
}
Run Code Online (Sandbox Code Playgroud)
整数求和有四种不同的方法:
我们在内部循环中以纳秒的形式看到我机器上的结果:
scala> NestBench.main(Array[String]())
Method raw produced -1511174132; time/it = 0.422 ns
Method closure produced -1511174132; time/it = 2.376 ns
Method inner produced -1511174132; time/it = 0.402 ns
Method func produced -1511174132; time/it = 0.836 ns
Method raw produced -1511174132; time/it = 0.418 ns
Method closure produced -1511174132; time/it = 2.410 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.813 ns
Method raw produced -1511174132; time/it = 0.411 ns
Method closure produced -1511174132; time/it = 2.372 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.813 ns
Method raw produced -1511174132; time/it = 0.411 ns
Method closure produced -1511174132; time/it = 2.370 ns
Method inner produced -1511174132; time/it = 0.399 ns
Method func produced -1511174132; time/it = 0.815 ns
Method raw produced -1511174132; time/it = 0.412 ns
Method closure produced -1511174132; time/it = 2.357 ns
Method inner produced -1511174132; time/it = 0.400 ns
Method func produced -1511174132; time/it = 0.817 ns
Run Code Online (Sandbox Code Playgroud)
所以,底线是:在简单的情况下,嵌套函数根本不会伤害到你--JVM会发现调用可以内联(因此raw并inner给出相同的时间).如果采用更多功能方法,则不能完全忽略函数调用,但所花费的时间非常小(每次调用大约0.4 ns).如果你使用了很多闭包,那么关闭它们会产生每次调用1 ns的开销,至少在写入单个可变变量的情况下.
你可以修改上面的代码来找到其他问题的答案,但最重要的是它总是非常快,介于"无任何惩罚"到"只担心在非常严格的内部循环中,否则只需要很少的工作做".
(PS为了进行比较,在我的机器上创建一个小对象需要大约4 ns.)
截至2014年1月的当前
目前的基准测试已经有3年的历史了,Hotspot和编译器已经有了很大的发展.我也在使用Google Caliper来执行基准测试.
import com.google.caliper.SimpleBenchmark
class Benchmark extends SimpleBenchmark {
def timeRaw(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += 0xc37e ^ (i * 0xd5f3)
i = i + 1
}
result
}
def normal(i: Int): Long = 0xc37e ^ (i * 0xd5f3)
def timeNormal(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += normal(i)
i = i + 1
}
result
}
def timeInner(reps: Int) = {
def inner(i: Int): Long = 0xc37e ^ (i * 0xd5f3)
var i = 0
var result = 0L
while (i < reps) {
result += inner(i)
i = i + 1
}
result
}
def timeClosure(reps: Int) = {
var i = 0
var result = 0L
val closure = () => result += 0xc37e ^ (i * 0xd5f3)
while (i < reps) {
closure()
i = i + 1
}
result
}
def normal(i: Int, j: Int, k: Int, l: Int): Long = i ^ j ^ k ^ l
def timeUnboxed(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
result += normal(i,i,i,i)
i = i + 1
}
result
}
val closure = (i: Int, j: Int, k: Int, l: Int) => (i ^ j ^ k ^ l).toLong
def timeBoxed(reps: Int) = {
var i = 0
var result = 0L
while (i < reps) {
closure(i,i,i,i)
i = i + 1
}
result
}
}
Run Code Online (Sandbox Code Playgroud)
benchmark ns linear runtime
Normal 0.576 =
Raw 0.576 =
Inner 0.576 =
Closure 0.532 =
Unboxed 0.893 =
Boxed 15.210 ==============================
Run Code Online (Sandbox Code Playgroud)
令人惊讶的是,闭合测试比其他测试完成快4ns.这似乎是Hotspot的特质而不是执行环境,多次运行都返回了相同的趋势.
使用执行装箱的闭包是一个巨大的性能打击,执行一次拆箱和重新装箱需要大约3.579ns,足以进行大量的原始数学运算.在这个特定的位置,在新的优化器上完成工作可能会变得更好.在一般情况下,拳击可以通过迷你车减轻.
编辑:
新的优化器在这里没有真正的帮助,它使Closure0.1 ns更慢,Boxed0.1 ns更快:
benchmark ns linear runtime
Raw 0.574 =
Normal 0.576 =
Inner 0.575 =
Closure 0.645 =
Unboxed 0.889 =
Boxed 15.107 ==============================
Run Code Online (Sandbox Code Playgroud)
来自magarciaEPFL/scala的2.11.0-20131209-220002-9587726041演出
java version "1.7.0_51"
Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)
Run Code Online (Sandbox Code Playgroud)
Scala compiler version 2.10.3 -- Copyright 2002-2013, LAMP/EPFL
Run Code Online (Sandbox Code Playgroud)