是否与numpy.pad()函数相反/相反?

Chr*_*ris 10 python numpy padding

有没有一个功能正在做什么numpy.pad()呢?

我正在寻找的是一个(统一)减少每个方向上的numpy数组(矩阵)的尺寸的函数.我试图numpy.pad()用负值调用,但它给出了一个错误:

import numpy as np

A_flat = np.array([0,1,2,3,4,5,6,7,8,9,10,11])
A = np.reshape(A_flat, (3,2,-1))

#this WORKS:
B = np.pad(A, ((1,1),(1,1),(1,1)), mode='constant')

# this DOES NOT WORK:
C = np.pad(B, ((-1,1),(1,1),(1,1)), mode='constant')
Run Code Online (Sandbox Code Playgroud)

错误: ValueError: ((-1, 1), (1, 1), (1, 1)) cannot contain negative values.

我理解这个函数numpy.pad()不带负值,但是有没有numpy.unpad()类似的东西?

unu*_*tbu 11

正如mdurant建议的那样,只需使用切片索引:

In [59]: B[1:-1, 1:-1, 1:-1]
Out[59]: 
array([[[ 0,  1],
        [ 2,  3]],

       [[ 4,  5],
        [ 6,  7]],

       [[ 8,  9],
        [10, 11]]])
Run Code Online (Sandbox Code Playgroud)


Rom*_*siy 6

您要的操作:

C = np.pad(B, ((-1,1),(1,1),(1,1)), mode='constant')
Run Code Online (Sandbox Code Playgroud)

可以用pad和常规切片的组合代替:

C = np.pad(B, ((0,1),(1,1),(1,1)), mode='constant')[1:,...]
Run Code Online (Sandbox Code Playgroud)


Bil*_*ily 5

通用的解决方案是这样的:

def unpad(x, pad_width):
    slices = []
    for c in pad_width:
        e = None if c[1] == 0 else -c[1]
        slices.append(slice(c[0], e))
    return x[tuple(slices)]

# Test
import numpy as np
pad_width = ((0, 0), (1, 0), (3, 4))

a = np.random.rand(10, 10, 10)
b = np.pad(a, pad_width, mode='constant')
c = unpad(b, pad_width)
np.testing.assert_allclose(a, c)
Run Code Online (Sandbox Code Playgroud)