根据另一个数据帧python pandas替换列值 - 更好的方法?

use*_*418 16 python pandas

注意:为了简单起见,我正在使用一个玩具示例,因为复制/粘贴数据帧很难在堆栈溢出(请告诉我是否有一个简单的方法来执行此操作).

有没有办法将一个数据框中的值合并到另一个数据框而不获取_X,_Y列?我希望一列上的值替换另一列的所有零值.

df1: 

Name   Nonprofit    Business    Education

X      1             1           0
Y      0             1           0   <- Y and Z have zero values for Nonprofit and Educ
Z      0             0           0
Y      0             1           0

df2:

Name   Nonprofit    Education
Y       1            1     <- this df has the correct values. 
Z       1            1



pd.merge(df1, df2, on='Name', how='outer')

Name   Nonprofit_X    Business    Education_X     Nonprofit_Y     Education_Y
Y       1                1          1                1               1
Y      1                 1          1                1               1
X      1                 1          0               nan             nan   
Z      1                 1          1                1               1
Run Code Online (Sandbox Code Playgroud)

在上一篇文章中,我尝试了combine_First和dropna(),但这些都没有完成任务.

我想用df2中的值替换df1中的零.此外,我希望根据df2更改具有相同名称的所有行.

Name    Nonprofit     Business    Education
Y        1             1           1
Y        1             1           1 
X        1             1           0
Z        1             0           1
Run Code Online (Sandbox Code Playgroud)

我现有的解决方案执行以下操作:我根据df2中存在的名称进行子集化,然后使用正确的值替换这些值.但是,我想要一个不那么黑客的方法来做到这一点.

pubunis_df = df2
sdf = df1 

regex = str_to_regex(', '.join(pubunis_df.ORGS))

pubunis = searchnamesre(sdf, 'ORGS', regex)

sdf.ix[pubunis.index, ['Education', 'Public']] = 1
searchnamesre(sdf, 'ORGS', regex)
Run Code Online (Sandbox Code Playgroud)

Jer*_*y Z 63

注意:在最新版本的熊猫中,以上两个答案都不再适用:

KSD 的回答会引发错误:

df1 = pd.DataFrame([["X",1,1,0],
              ["Y",0,1,0],
              ["Z",0,0,0],
              ["Y",0,0,0]],columns=["Name","Nonprofit","Business", "Education"])    

df2 = pd.DataFrame([["Y",1,1],
              ["Z",1,1]],columns=["Name","Nonprofit", "Education"])   

df1.loc[df1.Name.isin(df2.Name), ['Nonprofit', 'Education']] = df2.loc[df2.Name.isin(df1.Name),['Nonprofit', 'Education']].values

df1.loc[df1.Name.isin(df2.Name), ['Nonprofit', 'Education']] = df2[['Nonprofit', 'Education']].values

Out[851]:
ValueError: shape mismatch: value array of shape (2,) could not be broadcast to indexing result of shape (3,)
Run Code Online (Sandbox Code Playgroud)

而 EdChum 的回答会给我们错误的结果:

 df1.loc[df1.Name.isin(df2.Name), ['Nonprofit', 'Education']] = df2[['Nonprofit', 'Education']]

df1
Out[852]: 
  Name  Nonprofit  Business  Education
0    X        1.0         1        0.0
1    Y        1.0         1        1.0
2    Z        NaN         0        NaN
3    Y        NaN         1        NaN
Run Code Online (Sandbox Code Playgroud)

好吧,只有当“名称”列中的值是唯一的并且在两个数据框中都排序时,它才会安全地工作。

这是我的回答:

方式一:

df1 = df1.merge(df2,on='Name',how="left")
df1['Nonprofit_y'] = df1['Nonprofit_y'].fillna(df1['Nonprofit_x'])
df1['Business_y'] = df1['Business_y'].fillna(df1['Business_x'])
df1.drop(["Business_x","Nonprofit_x"],inplace=True,axis=1)
df1.rename(columns={'Business_y':'Business','Nonprofit_y':'Nonprofit'},inplace=True)
Run Code Online (Sandbox Code Playgroud)

方式二:

df1 = df1.set_index('Name')
df2 = df2.set_index('Name')
df1.update(df2)
df1.reset_index(inplace=True)
Run Code Online (Sandbox Code Playgroud)

有关更新的更多指南。. 在“更新”之前,需要设置索引的两个数据框的列名不必相同。您可以尝试“Name1”和“Name2”。此外,即使 df2 中的其他不必要的行也不会更新 df1,它也能工作。换句话说,df2 不需要是 df1 的超集。

例子:

df1 = pd.DataFrame([["X",1,1,0],
              ["Y",0,1,0],
              ["Z",0,0,0],
              ["Y",0,1,0]],columns=["Name1","Nonprofit","Business", "Education"])    

df2 = pd.DataFrame([["Y",1,1],
              ["Z",1,1],
              ['U',1,3]],columns=["Name2","Nonprofit", "Education"])   

df1 = df1.set_index('Name1')
df2 = df2.set_index('Name2')


df1.update(df2)
Run Code Online (Sandbox Code Playgroud)

结果:

      Nonprofit  Business  Education
Name1                                
X           1.0         1        0.0
Y           1.0         1        1.0
Z           1.0         0        1.0
Y           1.0         1        1.0
Run Code Online (Sandbox Code Playgroud)

  • 这对我帮助很大。像您这样的社区成员回来为下一批知识寻求者提供最新详细信息的方式确实非常值得称赞。太感谢了!!@杰里米Z (8认同)
  • 我的荣幸!:) (2认同)
  • @Emiliano如果你想选择一个特定的列,只需尝试 df1["Education"].update(df2["Education"]) (2认同)

EdC*_*ica 24

使用boolean mask from isin来过滤df并从rhs df中分配所需的行值:

In [27]:

df.loc[df.Name.isin(df1.Name), ['Nonprofit', 'Education']] = df1[['Nonprofit', 'Education']]
df
Out[27]:
  Name  Nonprofit  Business  Education
0    X          1         1          0
1    Y          1         1          1
2    Z          1         0          1
3    Y          1         1          1

[4 rows x 4 columns]
Run Code Online (Sandbox Code Playgroud)


小智 8

在[27]中:这是正确的.

df.loc[df.Name.isin(df1.Name), ['Nonprofit', 'Education']] = df1[['Nonprofit', 'Education']].values

df
Out[27]:

Name  Nonprofit  Business  Education

0    X          1         1          0
1    Y          1         1          1
2    Z          1         0          1
3    Y          1         1          1
Run Code Online (Sandbox Code Playgroud)

[4行x 4列]

只有当df1中的所有行都存在于df中时,上述操作才有效.换句话说,df应该是df1的超级集合

如果你在df1中有一些不匹配的行到df,你应该按照下面的说法进行操作

换句话说,df不是df1的超集:

df.loc[df.Name.isin(df1.Name), ['Nonprofit', 'Education']] = 
df1.loc[df1.Name.isin(df.Name),['Nonprofit', 'Education']].values
Run Code Online (Sandbox Code Playgroud)


AVK*_*AVK 5

df2.set_index('Name').combine_first(df1.set_index('Name')).reset_index()
Run Code Online (Sandbox Code Playgroud)