Mor*_*xes 5 algorithm haskell functional-programming
出于教育目的,我最近在Haskell中实现了通用算法.目前我被困在广度优先搜索上.这是我的实现,为简单起见,节点只表示为整数:
import qualified Data.Map as M
import qualified Data.List as L
type Node = Int
type Graph = M.Map Node [Node]
-- Returns list of nodes adjacent to n in graph g
adjacent :: Node -> Graph -> [Node]
adjacent n g = M.findWithDefault [] n g
-- Returns graph g with all instances of n removed
rip :: Node -> Graph -> Graph
rip n g = M.delete n (M.map (L.delete n) g)
bfs :: Node -> Graph -> [Node]
bfs n g = [n] ++ _bfs [n] g
_bfs :: [Node] -> Graph -> [Node]
_bfs (n:ns) g =
if not (M.null g) then
let layer = adjacent n g in
layer ++ _bfs (ns ++ layer) (rip n g)
else n:ns
_bfs [] g = []
Run Code Online (Sandbox Code Playgroud)
(实际构建图形还有其他功能,但为了简洁起见我将它们遗漏了)
调用的结果bfs
将是图的正确广度优先遍历,如果不是因为某些图形产生重复的事实,例如:
(bfs 1 g
for g
= this图的结果是[1,2,3,4,4,5,6,7,7,7]
)
我目前的解决方案可以归结为改变相关行_bfs
来L.nub $ layer ++ _bfs (ns ++ layer) (rip n g)
,但似乎令人难以置信的hackish,我不知道这是否会产生正确的广度优先遍历.除了n:ns
在插入之前不断检查重复项(听起来非常低效),我没有其他想法.
如何重写_bfs
(或更多),以便它不会产生重复的定义?
您应该使用一组已访问的节点而不是rip
.
首先,rip
剩余边数的时间是线性的,这使得整个广度优先遍历是二次的。
其次,无重复遍历对于 来说并不实用rip
。目前,添加重复节点是因为当前遍历边界的多个节点可以访问相同的节点。重新访问不能简单地进行修剪,rip
因为它会从图中完全删除节点,但我们仍然需要该节点才能继续遍历。
这是一个在 monad 中包含访问集的示例State
(这很好,因为我们可以逐个边界建立遍历边界,并且filterM
fromControl.Monad
可以方便地过滤出访问过的节点):
import qualified Data.IntMap.Strict as IM
import qualified Data.IntSet as IS
import Control.Monad
import Control.Monad.State.Strict
type Node = Int
type Graph = IM.IntMap [Node]
bfs :: Node -> Graph -> [Node]
bfs n g = evalState (go [n]) (IS.singleton n) where
go :: [Node] -> State IS.IntSet [Node]
go [] = return []
go ns = do
ns' <- flip filterM ((g IM.!) =<< ns) $ \n' -> do
notVisited <- gets (IS.notMember n')
when notVisited $ modify (IS.insert n')
return notVisited
(ns++) `fmap` go ns'
-- your example graph
graph :: Graph
graph = IM.fromList $ [
(1, [2, 3])
, (2, [1, 4])
, (3, [1, 4])
, (4, [2, 5, 3, 6])
, (5, [4, 7])
, (6, [4, 7])
, (7, [5, 6])]
main = print $ bfs 1 graph -- [1, 2, 3, 4, 5, 6, 7]
Run Code Online (Sandbox Code Playgroud)
这是相同算法的实现,没有State
,而是使用foldr
来传递更新的访问集:
bfs' :: Node -> Graph -> [Node]
bfs' start graph = go [start] (IS.singleton start) where
go :: [Node] -> IS.IntSet -> [Node]
go [] _ = []
go ns visited = ns ++ go ns' visited' where
newNodes = [n' | n <- ns, n' <- graph IM.! n]
step n (acc, visited)
| IS.member n visited = (acc, visited)
| otherwise = (n:acc, IS.insert n visited)
(ns', visited') = foldr step ([], visited) newNodes
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1854 次 |
最近记录: |