我正在将numpy稀疏数组(已删除)保存到csv中.结果是我有一个3GB的csv.问题是95%的细胞是0.0000.我用过fmt='%5.4f'.如何格式化和保存,使零保存为0,非零浮点数以'%5.4f'格式保存?如果我能做到这一点,我相信我可以将3GB降至300MB.
我在用
np.savetxt('foo.csv', arrayDense, fmt='%5.4f', delimiter = ',')
Run Code Online (Sandbox Code Playgroud)
感谢和问候
如果你看一下源代码np.savetxt,你会看到,虽然有很多代码可以处理Python 2和Python 3之间的参数和差异,但它最终是一个简单的python循环,其中行每行都被格式化并写入文件.因此,如果你自己编写,你就不会失去任何表现.例如,这是一个写下紧凑零的简化函数:
def savetxt_compact(fname, x, fmt="%.6g", delimiter=','):
with open(fname, 'w') as fh:
for row in x:
line = delimiter.join("0" if value == 0 else fmt % value for value in row)
fh.write(line + '\n')
Run Code Online (Sandbox Code Playgroud)
例如:
In [70]: x
Out[70]:
array([[ 0. , 0. , 0. , 0. , 1.2345 ],
[ 0. , 9.87654321, 0. , 0. , 0. ],
[ 0. , 3.14159265, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ]])
In [71]: savetxt_compact('foo.csv', x, fmt='%.4f')
In [72]: !cat foo.csv
0,0,0,0,1.2345
0,9.8765,0,0,0
0,3.1416,0,0,0
0,0,0,0,0
0,0,0,0,0
0,0,0,0,0
Run Code Online (Sandbox Code Playgroud)
然后,只要您编写自己的savetxt函数,您也可以使它处理稀疏矩阵,因此您不必在保存之前将其转换为(密集)numpy数组.(I假设稀疏数组实现使用从稀疏表示之一scipy.sparse.)在下面的函数,唯一的变化是从... for value in row到... for value in row.A[0].
def savetxt_sparse_compact(fname, x, fmt="%.6g", delimiter=','):
with open(fname, 'w') as fh:
for row in x:
line = delimiter.join("0" if value == 0 else fmt % value for value in row.A[0])
fh.write(line + '\n')
Run Code Online (Sandbox Code Playgroud)
例:
In [112]: a
Out[112]:
<6x5 sparse matrix of type '<type 'numpy.float64'>'
with 3 stored elements in Compressed Sparse Row format>
In [113]: a.A
Out[113]:
array([[ 0. , 0. , 0. , 0. , 1.2345 ],
[ 0. , 9.87654321, 0. , 0. , 0. ],
[ 0. , 3.14159265, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. ]])
In [114]: savetxt_sparse_compact('foo.csv', a, fmt='%.4f')
In [115]: !cat foo.csv
0,0,0,0,1.2345
0,9.8765,0,0,0
0,3.1416,0,0,0
0,0,0,0,0
0,0,0,0,0
0,0,0,0,0
Run Code Online (Sandbox Code Playgroud)
小智 5
另一个可以满足您要求的简单选项是'g'说明符.如果你更关心有效数字而不是更多关于看到x个数字的数字,并且不介意它在科学和浮点数之间切换,这很好地解决了问题.例如:
np.savetxt("foo.csv", arrayDense, fmt='%5.4g', delimiter=',')
Run Code Online (Sandbox Code Playgroud)
如果arrayDense是这样的:
matrix([[ -5.54900000e-01, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 3.43560000e-08, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 3.43422000e+01]])
Run Code Online (Sandbox Code Playgroud)
你的方式会产生:
-0.5549,0.0000,0.0000
0.0000,0.0000,0.0000
0.0000,0.0000,34.3422
Run Code Online (Sandbox Code Playgroud)
以上将反过来:
-0.5549, 0, 0
0,3.436e-08, 0
0, 0,34.34
Run Code Online (Sandbox Code Playgroud)
这种方式也更灵活.请注意,使用'g'代替'f',您不会丢失数据(即3.4356e-08而不是0.0000).这显然取决于您设置精度的方式.