Ste*_*ciu 8 java opencv feature-detection orb
我使用ORB功能检测器使用此代码查找两个图像之间的匹配:
FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB);
DescriptorExtractor descriptor = DescriptorExtractor.create(DescriptorExtractor.ORB);;
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
// First photo
Imgproc.cvtColor(img1, img1, Imgproc.COLOR_RGB2GRAY);
Mat descriptors1 = new Mat();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(img1, keypoints1);
descriptor.compute(img1, keypoints1, descriptors1);
// Second photo
Imgproc.cvtColor(img2, img2, Imgproc.COLOR_RGB2GRAY);
Mat descriptors2 = new Mat();
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(img2, keypoints2);
descriptor.compute(img2, keypoints2, descriptors2);
// Matching
MatOfDMatch matches = new MatOfDMatch();
MatOfDMatch filteredMatches = new MatOfDMatch();
matcher.match(descriptors1, descriptors2, matches);
// Linking
Scalar RED = new Scalar(255,0,0);
Scalar GREEN = new Scalar(0,255,0);
List<DMatch> matchesList = matches.toList();
Double max_dist = 0.0;
Double min_dist = 100.0;
for(int i = 0;i < matchesList.size(); i++){
Double dist = (double) matchesList.get(i).distance;
if (dist < min_dist)
min_dist = dist;
if ( dist > max_dist)
max_dist = dist;
}
LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
for(int i = 0;i < matchesList.size(); i++){
if (matchesList.get(i).distance <= (1.5 * min_dist))
good_matches.addLast(matchesList.get(i));
}
// Printing
MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(good_matches);
System.out.println(matches.size() + " " + goodMatches.size());
Mat outputImg = new Mat();
MatOfByte drawnMatches = new MatOfByte();
Features2d.drawMatches(img1, keypoints1, img2, keypoints2, goodMatches, outputImg, GREEN, RED, drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
Highgui.imwrite("matches.png", outputImg);
Run Code Online (Sandbox Code Playgroud)
我的问题是我无法找到一种方法来过滤匹配,以便它们只有在照片中具有相似位置时才匹配.我总是得到一个关键点的多个匹配,即使它们位置非常远.
有没有办法更好地过滤它们?
要获得更好的匹配结果,您应该按给定顺序包含这些过滤方法.
在两个方向上执行匹配,即,对于第一图像中的每个点,在第二图像中找到最佳匹配,反之亦然.
在匹配之间执行比率测试(欧几里德距离的比率测试)以消除模糊匹配.
您可以在计算机视觉应用程序编程手册的第9章中获得上述方法的所有细节.它还有用于实现这些过滤技术的示例代码.这很容易理解.(注意:本书中的代码是用C++编写的,但是一旦理解,它也可以在JAVA中轻松实现)
| 归档时间: |
|
| 查看次数: |
6641 次 |
| 最近记录: |