Gra*_*y M 9 python csv list unique
我有CSV文件,如下所示,
1994, Category1, Something Happened 1
1994, Category2, Something Happened 2
1995, Category1, Something Happened 3
1996, Category3, Something Happened 4
1998, Category2, Something Happened 5
Run Code Online (Sandbox Code Playgroud)
我想创建两个列表,
Category = [Category1, Category2, Category3]
Run Code Online (Sandbox Code Playgroud)
和
Year = [1994, 1995, 1996, 1998]
Run Code Online (Sandbox Code Playgroud)
我想省略列中的重复项.我正在阅读如下文件,
DataCaptured = csv.reader(DataFile, delimiter=',')
DataCaptured.next()
Run Code Online (Sandbox Code Playgroud)
和循环,
for Column in DataCaptured:
Run Code Online (Sandbox Code Playgroud)
daw*_*awg 10
你可以做:
DataCaptured = csv.reader(DataFile, delimiter=',', skipinitialspace=True)
Category, Year = [], []
for row in DataCaptured:
if row[0] not in Year:
Year.append(row[0])
if row[1] not in Category:
Category.append(row[1])
print Category, Year
# ['Category1', 'Category2', 'Category3'] ['1994', '1995', '1996', '1998']
Run Code Online (Sandbox Code Playgroud)
如评论中所述,如果订单无关紧要,使用套装会更容易,更快捷:
Category, Year = set(), set()
for row in DataCaptured:
Year.add(row[0])
Category.add(row[1])
Run Code Online (Sandbox Code Playgroud)
一个非常简洁的方法是使用pandas,其好处是:它具有更快的CSV pharser; 它在列中工作(所以它只需要一个df.apply(set)让你到达那里):
In [244]:
#Suppose the CSV is named temp.csv
df=pd.read_csv('temp.csv',header=None)
df.apply(set)
Out[244]:
0 set([1994, 1995, 1996, 1998])
1 set([ Category2, Category3, Category1])
2 set([ Something Happened 4, Something Happene...
dtype: object
Run Code Online (Sandbox Code Playgroud)
缺点是它返回a pandas.Series,并且为了访问每个列表,你需要做类似的事情list(df.apply(set)[0]).
如果必须保留订单,也可以非常轻松地完成,例如:
for i, item in df.iteritems():
print item.unique()
Run Code Online (Sandbox Code Playgroud)
item.unique()将返回numpy.arrays,而不是lists.
| 归档时间: |
|
| 查看次数: |
20110 次 |
| 最近记录: |