R中另一个变量的滚动和

jgr*_*nb1 9 r xts data.table

我希望通过ID获得7天的滚动金额.假设我的数据如下所示:

data<-as.data.frame(matrix(NA,42,3))
data$V1<-seq(as.Date("2014-05-01"),as.Date("2014-09-01"),by=3)
data$V2<-rep(1:6,7)
data$V3<-rep(c(1,2),21)
colnames(data)<-c("Date","USD","ID")

         Date USD ID
1  2014-05-01   1  1
2  2014-05-04   2  2
3  2014-05-07   3  1
4  2014-05-10   4  2
5  2014-05-13   5  1
6  2014-05-16   6  2
7  2014-05-19   1  1
8  2014-05-22   2  2
9  2014-05-25   3  1
10 2014-05-28   4  2
Run Code Online (Sandbox Code Playgroud)

如何添加一个新列,其中包含按ID划分的7天滚动总和?

Mik*_*han 8

如果您的数据很大,您可能需要查看使用的此解决方案data.table.它很快.如果您需要更多的速度,你可以随时更改mapplymcmapply并使用多个内核.

#Load data.table and convert to data.table object
require(data.table)
setDT(data)[,ID2:=.GRP,by=c("ID")]

#Build reference table
Ref <- data[,list(Compare_Value=list(I(USD)),Compare_Date=list(I(Date))), by=c("ID2")]

#Use mapply to get last seven days of value by id
data[,Roll.Val := mapply(RD = Date,NUM=ID2, function(RD, NUM) {
                  d <- as.numeric(Ref$Compare_Date[[NUM]] - RD)
                  sum((d <= 0 & d >= -7)*Ref$Compare_Value[[NUM]])})]
Run Code Online (Sandbox Code Playgroud)


jan*_*cki 6

OP提供的数据集不会暴露任务的复杂性.至于解决OP问题到目前为止,只有迈克的回答是正确的.
事实上,对于8个滚动天,而不是7个滚动天,由于d <= 0 & d >= -7.
zoo@G的解决方案.格洛腾迪克几乎是有效的,只有merge这样才能对每一组人都有效ID.
下面是第二个data.table解决方案,这次有效结果,使用dev RcppRoll允许na.rm=TRUE.
并略微格式化迈克的解决方案输出.

data<-as.data.frame(matrix(NA,42,3))
data$V1<-seq(as.Date("2014-05-01"),as.Date("2014-09-01"),by=3)
data$V2<-rep(1:6,7)
data$V3<-rep(c(1,2),21)
colnames(data)<-c("Date","USD","ID")

library(microbenchmark)
library(RcppRoll) # install_github("kevinushey/RcppRoll")
library(data.table) # install_github("Rdatatable/data.table")
correct_jan_dt = function(n, partial=TRUE){
  DT = as.data.table(data) # this can be speedup by setDT()
  date.range = DT[,range(Date)]
  all.dates = seq.Date(date.range[1],date.range[2],by=1)
  setkey(DT,ID,Date)
  r = DT[CJ(unique(ID),all.dates)][, c("roll") := as.integer(roll_sumr(USD, n, normalize = FALSE, na.rm = TRUE)), by="ID"][!is.na(USD)]
  # This could be simplified when `partial` arg will be implemented in [kevinushey/RcppRoll](https://github.com/kevinushey/RcppRoll)
  if(isTRUE(partial)){
    r[is.na(roll), roll := cumsum(USD), by="ID"][]
  }
  return(r[order(Date,ID)])
}
correct_mike_dt = function(){
  data = as.data.table(data)[,ID2:=.GRP,by=c("ID")]
  #Build reference table
  Ref <- data[,list(Compare_Value=list(I(USD)),Compare_Date=list(I(Date))), by=c("ID2")]
  #Use mapply to get last seven days of value by id
  data[, c("roll") := mapply(RD = Date,NUM=ID2, function(RD, NUM){
    d <- as.numeric(Ref$Compare_Date[[NUM]] - RD)
    sum((d <= 0 & d >= -7)*Ref$Compare_Value[[NUM]])})][,ID2:=NULL][]
}
identical(correct_mike_dt(), correct_jan_dt(n=8,partial=TRUE))
# [1] TRUE
microbenchmark(unit="relative", times=5L, correct_mike_dt(), correct_jan_dt(8))
# Unit: relative
#               expr      min       lq     mean   median       uq      max neval
#  correct_mike_dt() 274.0699 273.9892 267.2886 266.6009 266.2254 256.7296     5
#  correct_jan_dt(8)   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000     5
Run Code Online (Sandbox Code Playgroud)

期待@Khashaa的更新.

编辑(20150122.2):以下基准测试不回答OP问题.

定时更大(仍然很小)的数据集,5439行:

library(zoo)
library(data.table)
library(dplyr)
library(RcppRoll)
library(microbenchmark)
data<-as.data.frame(matrix(NA,5439,3))
data$V1<-seq(as.Date("1970-01-01"),as.Date("2014-09-01"),by=3)
data$V2<-sample(1:6,5439,TRUE)
data$V3<-sample(c(1,2),5439,TRUE)
colnames(data)<-c("Date","USD","ID")
zoo_f = function(){
    z <- read.zoo(data)
    z0 <- merge(z, zoo(, seq(start(z), end(z), "day")), fill = 0) # expand to daily
    roll <- function(x) rollsumr(x, 7, fill = NA)
    transform(data, roll = ave(z0$USD, z0$ID, FUN = roll)[time(z)])
}
dt_f = function(){
    DT = as.data.table(data) # this can be speedup by setDT()
    date.range = DT[,range(Date)]
    all.dates = seq.Date(date.range[1],date.range[2],by=1)
    setkey(DT,Date)
    DT[.(all.dates)
       ][order(Date), c("roll") := rowSums(setDT(shift(USD, 0:6, NA, "lag")),na.rm=FALSE), by="ID"
         ][!is.na(ID)]
}
dp_f = function(){
  data %>% group_by(ID) %>% 
    mutate(roll=roll_sum(c(rep(NA,6), USD), 7))
} 
dt2_f = function(){
  # this can be speedup by setDT()
  as.data.table(data)[, c("roll") := roll_sum(c(rep(NA,6), USD), 7), by="ID"][]
}
identical(as.data.table(zoo_f()),dt_f())
# [1] TRUE
identical(setDT(as.data.frame(dp_f())),dt_f())
# [1] TRUE
identical(dt2_f(),dt_f())
# [1] TRUE
microbenchmark(unit="relative", times=20L, zoo_f(), dt_f(), dp_f(), dt2_f())
# Unit: relative
#     expr        min         lq       mean     median         uq        max neval
#  zoo_f() 140.331889 141.891917 138.064126 139.381336 136.029019 137.730171    20
#   dt_f()  14.917166  14.464199  15.210757  16.898931  16.543811  14.221987    20
#   dp_f()   1.000000   1.000000   1.000000   1.000000   1.000000   1.000000    20
#  dt2_f()   1.536896   1.521983   1.500392   1.518641   1.629916   1.337903    20
Run Code Online (Sandbox Code Playgroud)

但我不确定我的data.table代码是否已经是最优的.

以上功能没有回答OP问题.阅读帖子顶部的更新.迈克的解决方案是正确的.


G. *_*eck 4

1)假设您的意思是该 ID 的每连续重叠 7 行:

library(zoo)

transform(data, roll = ave(USD, ID, FUN = function(x) rollsumr(x, 7, fill = NA)))
Run Code Online (Sandbox Code Playgroud)

2)如果你确实是指 7 天而不是 7 行,那么试试这个:

library(zoo)

z <- read.zoo(data)
z0 <- merge(z, zoo(, seq(start(z), end(z), "day")), fill = 0) # expand to daily
roll <- function(x) rollsumr(x, 7, fill = NA)
transform(data, roll = ave(z0$USD, z0$ID, FUN = roll)[time(z)])
Run Code Online (Sandbox Code Playgroud)

更新添加了(2)并做了一些改进。