我有一个由时间戳索引的值的系列。这些时间戳的间隔不规则,我想计算一些类似于过去 N 秒的滚动平均值(例如),其中 N 是一个常数。不幸的是,在计算滚动数量之前定期重新采样不是一种选择——滚动数量必须在整个数据集上计算。
大熊猫有什么好办法吗?
小智 3
您想要将索引重置为整数索引并对时间戳列执行滚动操作。
# generate some data
data = pd.DataFrame(data={'vals':range(5), 'seed_ts': [np.datetime64('2017-04-13T09:00:00') for x in range(5)]})
data['random_offset'] = [np.timedelta64(randint(0, 5), 's') for x in range(5)]
data['cum_time'] = data['random_offset'].cumsum()
data['ts'] = data['seed_ts'] + data['cum_time']
data.index = data['ts']
data = data[['vals']]
Run Code Online (Sandbox Code Playgroud)
重置索引:
data = data.reset_index()
Run Code Online (Sandbox Code Playgroud)
计算过去 5 秒的滚动平均值:
data['rolling_mean'] = data.rolling('5s', on='ts')['vals'].mean()
Run Code Online (Sandbox Code Playgroud)