为什么通过字符串进行的往返转换对双重不安全?

Phi*_*ing 184 c# precision double tostring

最近我不得不将双序列化为文本,然后将其取回.该值似乎不相等:

double d1 = 0.84551240822557006;
string s = d1.ToString("R");
double d2 = double.Parse(s);
bool s1 = d1 == d2;
// -> s1 is False
Run Code Online (Sandbox Code Playgroud)

但根据MSDN:标准数字格式字符串,"R"选项应该保证往返安全.

往返("R")格式说明符用于确保转换为字符串的数值将被解析回相同的数值

为什么会这样?

Meh*_*dad 177

我发现了这个bug.

.NET执行以下操作clr\src\vm\comnumber.cpp:

DoubleToNumber(value, DOUBLE_PRECISION, &number);

if (number.scale == (int) SCALE_NAN) {
    gc.refRetVal = gc.numfmt->sNaN;
    goto lExit;
}

if (number.scale == SCALE_INF) {
    gc.refRetVal = (number.sign? gc.numfmt->sNegativeInfinity: gc.numfmt->sPositiveInfinity);
    goto lExit;
}

NumberToDouble(&number, &dTest);

if (dTest == value) {
    gc.refRetVal = NumberToString(&number, 'G', DOUBLE_PRECISION, gc.numfmt);
    goto lExit;
}

DoubleToNumber(value, 17, &number);
Run Code Online (Sandbox Code Playgroud)

DoubleToNumber很简单 - 它只是调用_ecvt,它在C运行时:

void DoubleToNumber(double value, int precision, NUMBER* number)
{
    WRAPPER_CONTRACT
    _ASSERTE(number != NULL);

    number->precision = precision;
    if (((FPDOUBLE*)&value)->exp == 0x7FF) {
        number->scale = (((FPDOUBLE*)&value)->mantLo || ((FPDOUBLE*)&value)->mantHi) ? SCALE_NAN: SCALE_INF;
        number->sign = ((FPDOUBLE*)&value)->sign;
        number->digits[0] = 0;
    }
    else {
        char* src = _ecvt(value, precision, &number->scale, &number->sign);
        wchar* dst = number->digits;
        if (*src != '0') {
            while (*src) *dst++ = *src++;
        }
        *dst = 0;
    }
}
Run Code Online (Sandbox Code Playgroud)

事实证明,它_ecvt返回字符串845512408225570.

注意尾随零?事实证明,这一切都有所不同!
当零存在时,结果实际解析回来0.84551240822557006,这是你的原始数字 - 所以它比较相等,因此只返回15位数.

但是,如果我将该字符串截断为零84551240822557,那么我会回来0.84551240822556994,这不是您的原始数字,因此它将返回17位数.

证明:在调试器中运行以下64位代码(我从Microsoft Shared Source CLI 2.0中提取的大部分代码)并v在以下结尾处检查main:

#include <stdlib.h>
#include <string.h>
#include <math.h>

#define min(a, b) (((a) < (b)) ? (a) : (b))

struct NUMBER {
    int precision;
    int scale;
    int sign;
    wchar_t digits[20 + 1];
    NUMBER() : precision(0), scale(0), sign(0) {}
};


#define I64(x) x##LL
static const unsigned long long rgval64Power10[] = {
    // powers of 10
    /*1*/ I64(0xa000000000000000),
    /*2*/ I64(0xc800000000000000),
    /*3*/ I64(0xfa00000000000000),
    /*4*/ I64(0x9c40000000000000),
    /*5*/ I64(0xc350000000000000),
    /*6*/ I64(0xf424000000000000),
    /*7*/ I64(0x9896800000000000),
    /*8*/ I64(0xbebc200000000000),
    /*9*/ I64(0xee6b280000000000),
    /*10*/ I64(0x9502f90000000000),
    /*11*/ I64(0xba43b74000000000),
    /*12*/ I64(0xe8d4a51000000000),
    /*13*/ I64(0x9184e72a00000000),
    /*14*/ I64(0xb5e620f480000000),
    /*15*/ I64(0xe35fa931a0000000),

    // powers of 0.1
    /*1*/ I64(0xcccccccccccccccd),
    /*2*/ I64(0xa3d70a3d70a3d70b),
    /*3*/ I64(0x83126e978d4fdf3c),
    /*4*/ I64(0xd1b71758e219652e),
    /*5*/ I64(0xa7c5ac471b478425),
    /*6*/ I64(0x8637bd05af6c69b7),
    /*7*/ I64(0xd6bf94d5e57a42be),
    /*8*/ I64(0xabcc77118461ceff),
    /*9*/ I64(0x89705f4136b4a599),
    /*10*/ I64(0xdbe6fecebdedd5c2),
    /*11*/ I64(0xafebff0bcb24ab02),
    /*12*/ I64(0x8cbccc096f5088cf),
    /*13*/ I64(0xe12e13424bb40e18),
    /*14*/ I64(0xb424dc35095cd813),
    /*15*/ I64(0x901d7cf73ab0acdc),
};

static const signed char rgexp64Power10[] = {
    // exponents for both powers of 10 and 0.1
    /*1*/ 4,
    /*2*/ 7,
    /*3*/ 10,
    /*4*/ 14,
    /*5*/ 17,
    /*6*/ 20,
    /*7*/ 24,
    /*8*/ 27,
    /*9*/ 30,
    /*10*/ 34,
    /*11*/ 37,
    /*12*/ 40,
    /*13*/ 44,
    /*14*/ 47,
    /*15*/ 50,
};

static const unsigned long long rgval64Power10By16[] = {
    // powers of 10^16
    /*1*/ I64(0x8e1bc9bf04000000),
    /*2*/ I64(0x9dc5ada82b70b59e),
    /*3*/ I64(0xaf298d050e4395d6),
    /*4*/ I64(0xc2781f49ffcfa6d4),
    /*5*/ I64(0xd7e77a8f87daf7fa),
    /*6*/ I64(0xefb3ab16c59b14a0),
    /*7*/ I64(0x850fadc09923329c),
    /*8*/ I64(0x93ba47c980e98cde),
    /*9*/ I64(0xa402b9c5a8d3a6e6),
    /*10*/ I64(0xb616a12b7fe617a8),
    /*11*/ I64(0xca28a291859bbf90),
    /*12*/ I64(0xe070f78d39275566),
    /*13*/ I64(0xf92e0c3537826140),
    /*14*/ I64(0x8a5296ffe33cc92c),
    /*15*/ I64(0x9991a6f3d6bf1762),
    /*16*/ I64(0xaa7eebfb9df9de8a),
    /*17*/ I64(0xbd49d14aa79dbc7e),
    /*18*/ I64(0xd226fc195c6a2f88),
    /*19*/ I64(0xe950df20247c83f8),
    /*20*/ I64(0x81842f29f2cce373),
    /*21*/ I64(0x8fcac257558ee4e2),

    // powers of 0.1^16
    /*1*/ I64(0xe69594bec44de160),
    /*2*/ I64(0xcfb11ead453994c3),
    /*3*/ I64(0xbb127c53b17ec165),
    /*4*/ I64(0xa87fea27a539e9b3),
    /*5*/ I64(0x97c560ba6b0919b5),
    /*6*/ I64(0x88b402f7fd7553ab),
    /*7*/ I64(0xf64335bcf065d3a0),
    /*8*/ I64(0xddd0467c64bce4c4),
    /*9*/ I64(0xc7caba6e7c5382ed),
    /*10*/ I64(0xb3f4e093db73a0b7),
    /*11*/ I64(0xa21727db38cb0053),
    /*12*/ I64(0x91ff83775423cc29),
    /*13*/ I64(0x8380dea93da4bc82),
    /*14*/ I64(0xece53cec4a314f00),
    /*15*/ I64(0xd5605fcdcf32e217),
    /*16*/ I64(0xc0314325637a1978),
    /*17*/ I64(0xad1c8eab5ee43ba2),
    /*18*/ I64(0x9becce62836ac5b0),
    /*19*/ I64(0x8c71dcd9ba0b495c),
    /*20*/ I64(0xfd00b89747823938),
    /*21*/ I64(0xe3e27a444d8d991a),
};

static const signed short rgexp64Power10By16[] = {
    // exponents for both powers of 10^16 and 0.1^16
    /*1*/ 54,
    /*2*/ 107,
    /*3*/ 160,
    /*4*/ 213,
    /*5*/ 266,
    /*6*/ 319,
    /*7*/ 373,
    /*8*/ 426,
    /*9*/ 479,
    /*10*/ 532,
    /*11*/ 585,
    /*12*/ 638,
    /*13*/ 691,
    /*14*/ 745,
    /*15*/ 798,
    /*16*/ 851,
    /*17*/ 904,
    /*18*/ 957,
    /*19*/ 1010,
    /*20*/ 1064,
    /*21*/ 1117,
};

static unsigned DigitsToInt(wchar_t* p, int count)
{
    wchar_t* end = p + count;
    unsigned res = *p - '0';
    for ( p = p + 1; p < end; p++) {
        res = 10 * res + *p - '0';
    }
    return res;
}
#define Mul32x32To64(a, b) ((unsigned long long)((unsigned long)(a)) * (unsigned long long)((unsigned long)(b)))

static unsigned long long Mul64Lossy(unsigned long long a, unsigned long long b, int* pexp)
{
    // it's ok to losse some precision here - Mul64 will be called
    // at most twice during the conversion, so the error won't propagate
    // to any of the 53 significant bits of the result
    unsigned long long val = Mul32x32To64(a >> 32, b >> 32) +
        (Mul32x32To64(a >> 32, b) >> 32) +
        (Mul32x32To64(a, b >> 32) >> 32);

    // normalize
    if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; *pexp -= 1; }

    return val;
}

void NumberToDouble(NUMBER* number, double* value)
{
    unsigned long long val;
    int exp;
    wchar_t* src = number->digits;
    int remaining;
    int total;
    int count;
    int scale;
    int absscale;
    int index;

    total = (int)wcslen(src);
    remaining = total;

    // skip the leading zeros
    while (*src == '0') {
        remaining--;
        src++;
    }

    if (remaining == 0) {
        *value = 0;
        goto done;
    }

    count = min(remaining, 9);
    remaining -= count;
    val = DigitsToInt(src, count);

    if (remaining > 0) {
        count = min(remaining, 9);
        remaining -= count;

        // get the denormalized power of 10
        unsigned long mult = (unsigned long)(rgval64Power10[count-1] >> (64 - rgexp64Power10[count-1]));
        val = Mul32x32To64(val, mult) + DigitsToInt(src+9, count);
    }

    scale = number->scale - (total - remaining);
    absscale = abs(scale);
    if (absscale >= 22 * 16) {
        // overflow / underflow
        *(unsigned long long*)value = (scale > 0) ? I64(0x7FF0000000000000) : 0;
        goto done;
    }

    exp = 64;

    // normalize the mantisa
    if ((val & I64(0xFFFFFFFF00000000)) == 0) { val <<= 32; exp -= 32; }
    if ((val & I64(0xFFFF000000000000)) == 0) { val <<= 16; exp -= 16; }
    if ((val & I64(0xFF00000000000000)) == 0) { val <<= 8; exp -= 8; }
    if ((val & I64(0xF000000000000000)) == 0) { val <<= 4; exp -= 4; }
    if ((val & I64(0xC000000000000000)) == 0) { val <<= 2; exp -= 2; }
    if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; exp -= 1; }

    index = absscale & 15;
    if (index) {
        int multexp = rgexp64Power10[index-1];
        // the exponents are shared between the inverted and regular table
        exp += (scale < 0) ? (-multexp + 1) : multexp;

        unsigned long long multval = rgval64Power10[index + ((scale < 0) ? 15 : 0) - 1];
        val = Mul64Lossy(val, multval, &exp);
    }

    index = absscale >> 4;
    if (index) {
        int multexp = rgexp64Power10By16[index-1];
        // the exponents are shared between the inverted and regular table
        exp += (scale < 0) ? (-multexp + 1) : multexp;

        unsigned long long multval = rgval64Power10By16[index + ((scale < 0) ? 21 : 0) - 1];
        val = Mul64Lossy(val, multval, &exp);
    }

    // round & scale down
    if ((unsigned long)val & (1 << 10))
    {
        // IEEE round to even
        unsigned long long tmp = val + ((1 << 10) - 1) + (((unsigned long)val >> 11) & 1);
        if (tmp < val) {
            // overflow
            tmp = (tmp >> 1) | I64(0x8000000000000000);
            exp += 1;
        }
        val = tmp;
    }
    val >>= 11;

    exp += 0x3FE;

    if (exp <= 0) {
        if (exp <= -52) {
            // underflow
            val = 0;
        }
        else {
            // denormalized
            val >>= (-exp+1);
        }
    }
    else
        if (exp >= 0x7FF) {
            // overflow
            val = I64(0x7FF0000000000000);
        }
        else {
            val = ((unsigned long long)exp << 52) + (val & I64(0x000FFFFFFFFFFFFF));
        }

        *(unsigned long long*)value = val;

done:
        if (number->sign) *(unsigned long long*)value |= I64(0x8000000000000000);
}

int main()
{
    NUMBER number;
    number.precision = 15;
    double v = 0.84551240822557006;
    char *src = _ecvt(v, number.precision, &number.scale, &number.sign);
    int truncate = 0;  // change to 1 if you want to truncate
    if (truncate)
    {
        while (*src && src[strlen(src) - 1] == '0')
        {
            src[strlen(src) - 1] = 0;
        }
    }
    wchar_t* dst = number.digits;
    if (*src != '0') {
        while (*src) *dst++ = *src++;
    }
    *dst++ = 0;
    NumberToDouble(&number, &v);
    return 0;
}
Run Code Online (Sandbox Code Playgroud)

  • 我必须说这是相当可悲的.在数学上相等的字符串(例如具有尾随零的字符串,或者说2.1e-1与0.21)应始终给出相同的结果,并且在数学上排序的字符串应该给出与排序一致的结果. (10认同)
  • @ gnasher729:我有点同意"2.1e-1"和"0.21"...但是一个尾随零的字符串并不完全等于没有 - 在前者中,零是一个有效数字并添加精确. (9认同)
  • 好解释`+ 1`.这段代码来自[shared-source-cli-2.0](https://github.com/gbarnett/shared-source-cli-2.0)对吗?这是我发现的唯一想法. (4认同)
  • @MrLister:为什么不应该"2.1E-1和0.21一样"? (4认同)
  • @cHao:呃......它增加了精确度,但这只会影响你决定舍入最终答案的方式,如果sigfigs对你很重要,而不是计算机应该如何计算最终答案.计算机的工作是以最高*精度计算所有内容,而不管数字的实际测量精度如何; 如果他想要围绕最终结果,这是程序员的问题. (4认同)
  • 关于尾随零添加精度的论证也可用于证明"1.0"被解析为比"1.00"更远的1. (4认同)
  • @SonerGönül:谢谢!是的. (2认同)
  • 那么为什么这只发生在64位版本中呢?32位CLR的代码是否不会删除尾随零? (2认同)
  • @cHao:你转换成的双重没有有效数字的概念,所以给那些尾随的零赋予意义是无稽之谈. (2认同)
  • 问题的一部分是计算机用二进制而不是十进制来思考,而在二进制中,数字1/10和1/100就像十进制的1/3.因此,在计算机上存储2.1等数字时总会出现一些舍入错误.考虑到这一点,您可以看到解析"2.1E-1"的顺序如何影响存储的数量.如果**精确**等等对你来说很重要,通常使用整数更安全,即将数字0.21乘以100得到21.如果小数点后面有一个已知的位数,例如美元,则可以使用和美分. (2认同)
  • [文档说](https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings#RFormatString) «对于 Double 值,“R”格式说明符某些情况下无法成功往返原始值。对于 Double 和 Single 值,它的性能也相对较差。相反,我们建议您对 Double 值使用“G17”格式说明符,并使用“G9”格式说明符来成功往返 Single 值。» 我想知道,微软是否在某个时候明确决定不修复“R”中的错误,而只是在文档中添加注释。 (2认同)

Jon*_*eet 107

在我看来,这只是一个错误.您的期望是完全合理的.我使用.NET 4.5.1(x64)重现它,运行以下使用我的DoubleConverter类的控制台应用程序.DoubleConverter.ToExactString显示由a 表示的确切double:

using System;

class Test
{
    static void Main()
    {
        double d1 = 0.84551240822557006;
        string s = d1.ToString("r");
        double d2 = double.Parse(s);
        Console.WriteLine(s);
        Console.WriteLine(DoubleConverter.ToExactString(d1));
        Console.WriteLine(DoubleConverter.ToExactString(d2));
        Console.WriteLine(d1 == d2);
    }
}
Run Code Online (Sandbox Code Playgroud)

.NET中的结果:

0.84551240822557
0.845512408225570055719799711368978023529052734375
0.84551240822556994469749724885332398116588592529296875
False
Run Code Online (Sandbox Code Playgroud)

单声道3.3.0中的结果:

0.84551240822557006
0.845512408225570055719799711368978023529052734375
0.845512408225570055719799711368978023529052734375
True
Run Code Online (Sandbox Code Playgroud)

如果您手动指定Mono中的字符串(末尾包含"006"),.NET会将其解析回原始值.看起来问题在于ToString("R")处理而不是解析.

正如其他评论中所述,它看起来特定于在x64 CLR下运行.如果编译并运行上面的代码定位到x86,那很好:

csc /platform:x86 Test.cs DoubleConverter.cs
Run Code Online (Sandbox Code Playgroud)

...你得到与Mono相同的结果.知道这个bug是否出现在RyuJIT下会很有趣 - 我现在没有安装它.特别是,我可以想象这可能是一个JIT错误,或者很可能存在double.ToString基于体系结构的内部的完全不同的实现.

我建议你在http://connect.microsoft.com上提交一个错误

  • 我认为发生的事情是"往返"格式输出的值比它应该大0.498ulp,并且解析逻辑有时会错误地将其向上舍入到最后一小部分ulp.我不确定我责怪哪些代码更多,因为我认为"往返"格式应该输出一个数值,该值在数字上正确的四分之一ULP内; 解析逻辑产生的值超出指定值0.75ulp比逻辑容易得多,逻辑必须产生的结果在指定的0.502ulp范围内. (2认同)