use*_*051 4 normalization matrix sparse-matrix julia
如果我使用稀疏(i,j,k)构造函数构造了稀疏矩阵,那么如何对矩阵的列进行归一化(以便每列总和为1)?在创建矩阵之前,我无法有效地规范化条目,因此感谢任何帮助.谢谢!
最简单的方法是按列总和进行广播划分:
julia> A = sprand(4,5,.5)
A./sum(A,1)
4x5 Array{Float64,2}:
0.0 0.0989976 0.0 0.0 0.0795486
0.420754 0.458653 0.0986313 0.0 0.0
0.0785525 0.442349 0.0 0.856136 0.920451
0.500693 0.0 0.901369 0.143864 0.0
Run Code Online (Sandbox Code Playgroud)
...但它看起来还没有针对稀疏矩阵进行优化,而是回落到一个完整的矩阵.因此,迭代列的简单循环可以解决问题:
julia> for (col,s) in enumerate(sum(A,1))
s == 0 && continue # What does a "normalized" column with a sum of zero look like?
A[:,col] = A[:,col]/s
end
A
4x5 sparse matrix with 12 Float64 entries:
[2, 1] = 0.420754
[3, 1] = 0.0785525
[4, 1] = 0.500693
[1, 2] = 0.0989976
[2, 2] = 0.458653
[3, 2] = 0.442349
[2, 3] = 0.0986313
[4, 3] = 0.901369
[3, 4] = 0.856136
[4, 4] = 0.143864
[1, 5] = 0.0795486
[3, 5] = 0.920451
julia> sum(A,1)
1x5 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0
Run Code Online (Sandbox Code Playgroud)
这完全在稀疏矩阵内工作并且就地完成(尽管它仍然为每个列切片分配新的稀疏矩阵).