我应该如何用溪流来总结一下?

Lou*_* F. 6 java java-8

我已经看过并尝试过如何在流中对某些内容求和的不同实现.这是我的代码:

List<Person> persons = new ArrayList<Person>();

for(int i=0; i < 10000000; i++){
    persons.add(new Person("random", 26));
}

Long start = System.currentTimeMillis();
int test = persons.stream().collect(Collectors.summingInt(p -> p.getAge()));
Long end = System.currentTimeMillis();
System.out.println("Sum of ages = " + test + " and it took : " + (end - start) + " ms with collectors");

Long start3 = System.currentTimeMillis();
int test3 = persons.parallelStream().collect(Collectors.summingInt(p -> p.getAge()));
Long end3 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test3 + " and it took : " + (end3 - start3) + " ms with collectors and parallel stream");


Long start2 = System.currentTimeMillis();
int test2 = persons.stream().mapToInt(p -> p.getAge()).sum();
Long end2 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test2 + " and it took : " + (end2 - start2) + " ms with map and sum");

Long start4 = System.currentTimeMillis();
int test4 = persons.parallelStream().mapToInt(p -> p.getAge()).sum();
Long end4 = System.currentTimeMillis();
System.out.println("Sum of ages = " + test4 + " and it took : " + (end4 - start4) + " ms with map and sum and parallel stream");
Run Code Online (Sandbox Code Playgroud)

这给了我以下结果:

Sum of ages = 220000000 and it took : 110 ms with collectors
Sum of ages = 220000000 and it took : 272 ms with collectors and parallel stream
Sum of ages = 220000000 and it took : 137 ms with map and sum
Sum of ages = 220000000 and it took : 134 ms with map and sum and parallel stream
Run Code Online (Sandbox Code Playgroud)

我尝试了几次并且每次给我不同的结果(大部分时间最后的解决方案是最好的),所以我想知道:

1)正确的方法是什么?

2)为什么?(与其他解决方案有什么区别?)

bla*_*dri 11

在我们进入实际答案之前,您应该了解一些事项:

  1. 您的测试结果可能会有很大差异,具体取决于许多因素(例如您运行它的计算机).以下是我的8核机器上运行的结果:

    Sum of ages = 260000000 and it took : 94 ms with collectors
    Sum of ages = 260000000 and it took : 61 ms with collectors and parallel stream
    Sum of ages = 260000000 and it took : 70 ms with map and sum
    Sum of ages = 260000000 and it took : 94 ms with map and sum and parallel stream
    
    Run Code Online (Sandbox Code Playgroud)

    然后在以后的运行中:

    Sum of ages = 260000000 and it took : 68 ms with collectors
    Sum of ages = 260000000 and it took : 67 ms with collectors and parallel stream
    Sum of ages = 260000000 and it took : 66 ms with map and sum
    Sum of ages = 260000000 and it took : 109 ms with map and sum and parallel stream
    
    Run Code Online (Sandbox Code Playgroud)
  2. 微基准测试不是一个容易的主题.有方法可以做到这一点(稍后我会介绍),但System.currentTimeMillies()在大多数情况下,尝试使用将无法可靠地运行.

  3. 仅仅因为Java 8使并行操作变得容易,这并不意味着它们应该在任何地方使用.并行操作在某些情况下有意义,在其他情况下则不然.

好的,现在让我们来看看你正在使用的各种方法.

  • 顺序收集器:summingInt您使用的收集器具有以下实现:

    public static <T> Collector<T, ?, Integer> summingInt(ToIntFunction<? super T> mapper) {
        return new CollectorImpl<>(
                () -> new int[1],
                (a, t) -> { a[0] += mapper.applyAsInt(t); },
                (a, b) -> { a[0] += b[0]; return a; },
                a -> a[0], Collections.emptySet());
    }
    
    Run Code Online (Sandbox Code Playgroud)

    因此,首先将创建一个包含一个元素的新数组.然后在每一个Person信息流中元素的collect功能将使用Person#getAge()函数来检索年龄为Integer(不是int!),而且年龄添加到以前的(一维数组中).最后,当处理完整个流时,它将从该数组中提取值并返回它.所以,这里有很多自动装箱和装箱.

  • 并行收集器:它使用该ReferencePipeline#forEach(Consumer)函数来累积从映射函数获得的年龄.再次有很多自动装箱和-unboxing.
  • 顺序地图和总和:在这里你将你的地图映射Stream<Person>到一个IntStream.这意味着一件事就是不再需要自动装箱或装箱了; 在某些情况下,这可以节省大量时间.然后使用以下实现对结果流求和:

    @Override
    public final int sum() {
        return reduce(0, Integer::sum);
    }
    
    Run Code Online (Sandbox Code Playgroud)

    reduce这里的功能会调用ReduceOps#ReduceOp#evaluateSequential(PipelineHelper<T> helper, Spliterator<P_IN> spliterator).实际上,这将使用Integer::sum所有数字上的函数,从0开始,第一个数字,然后是第二个数字的结果,依此类推.

  • 并行映射和求和:这里的事情变得有趣.它使用相同的sum()函数,但是在这种情况下,reduce会调用ReduceOps#ReduceOp#evaluateParallel(PipelineHelper<T> helper, Spliterator<P_IN> spliterator)而不是顺序选项.这将基本上使用分而治之的方法来累加值.现在,分而治之的巨大优势当然是它可以很容易地并行完成.然而,它确实需要多次拆分和重新连接流,这需要时间.因此它的速度变化很大,取决于它与元素有关的实际任务的复杂性.在添加的情况下,在大多数情况下可能不值得; 正如你从我的结果中看到的那样,它总是一种较慢的方法.

现在,为了真正了解所需的时间,让我们做一个适当的微观基准测试.我将使用JMH以下基准代码:

package com.stackoverflow.user2352924;

import org.openjdk.jmh.annotations.*;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;

@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MINUTES)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 10, time = 10, timeUnit = TimeUnit.SECONDS)
@State(Scope.Benchmark)
@Fork(1)
@Threads(2)
public class MicroBenchmark {

    private static List<Person> persons = new ArrayList<>();

    private int test;

    static {
        for(int i=0; i < 10000000; i++){
            persons.add(new Person("random", 26));
        }
    }

    @Benchmark
    public void sequentialCollectors() {
        test = 0;
        test += persons.stream().collect(Collectors.summingInt(p -> p.getAge()));
    }

    @Benchmark
    public void parallelCollectors() {
        test = 0;
        test += persons.parallelStream().collect(Collectors.summingInt(p -> p.getAge()));
    }

    @Benchmark
    public void sequentialMapSum() {
        test = 0;
        test += persons.stream().mapToInt(p -> p.getAge()).sum();
    }

    @Benchmark
    public void parallelMapSum() {
        test = 0;
        test += persons.parallelStream().mapToInt(p -> p.getAge()).sum();
    }

}
Run Code Online (Sandbox Code Playgroud)

pom.xml这个Maven项目如下:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.stackoverflow.user2352924</groupId>
    <artifactId>StackOverflow</artifactId>
    <version>1.0</version>
    <packaging>jar</packaging>

    <name>Auto-generated JMH benchmark</name>

    <prerequisites>
        <maven>3.0</maven>
    </prerequisites>

    <dependencies>
        <dependency>
            <groupId>org.openjdk.jmh</groupId>
            <artifactId>jmh-core</artifactId>
            <version>${jmh.version}</version>
        </dependency>
        <dependency>
            <groupId>org.openjdk.jmh</groupId>
            <artifactId>jmh-generator-annprocess</artifactId>
            <version>${jmh.version}</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <jmh.version>0.9.5</jmh.version>
        <javac.target>1.8</javac.target>
        <uberjar.name>benchmarks</uberjar.name>
    </properties>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <compilerVersion>${javac.target}</compilerVersion>
                    <source>${javac.target}</source>
                    <target>${javac.target}</target>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.2</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <finalName>microbenchmarks</finalName>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>org.openjdk.jmh.Main</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
        <pluginManagement>
            <plugins>
                <plugin>
                    <artifactId>maven-clean-plugin</artifactId>
                    <version>2.5</version>
                </plugin>
                <plugin>
                    <artifactId>maven-deploy-plugin</artifactId>
                    <version>2.8.1</version>
                </plugin>
                <plugin>
                    <artifactId>maven-install-plugin</artifactId>
                    <version>2.5.1</version>
                </plugin>
                <plugin>
                    <artifactId>maven-jar-plugin</artifactId>
                    <version>2.4</version>
                </plugin>
                <plugin>
                    <artifactId>maven-javadoc-plugin</artifactId>
                    <version>2.9.1</version>
                </plugin>
                <plugin>
                    <artifactId>maven-resources-plugin</artifactId>
                    <version>2.6</version>
                </plugin>
                <plugin>
                    <artifactId>maven-site-plugin</artifactId>
                    <version>3.3</version>
                </plugin>
                <plugin>
                    <artifactId>maven-source-plugin</artifactId>
                    <version>2.2.1</version>
                </plugin>
                <plugin>
                    <artifactId>maven-surefire-plugin</artifactId>
                    <version>2.17</version>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>

</project>
Run Code Online (Sandbox Code Playgroud)

确保Maven也在运行Java 8,否则你会遇到难看的错误.

我不会在这里详细介绍如何使用JMH(还有其他地方可以这样做),但这是我得到的结果:

# Run complete. Total time: 00:08:48

Benchmark                                     Mode  Samples     Score  Score error    Units
c.s.u.MicroBenchmark.parallelCollectors      thrpt       10  3658,949      775,115  ops/min
c.s.u.MicroBenchmark.parallelMapSum          thrpt       10  2616,905      221,109  ops/min
c.s.u.MicroBenchmark.sequentialCollectors    thrpt       10  5502,160      439,024  ops/min
c.s.u.MicroBenchmark.sequentialMapSum        thrpt       10  6120,162      609,232  ops/min
Run Code Online (Sandbox Code Playgroud)

因此,在我运行这些测试的系统上,顺序映射总和相当快,在并行映射总和(使用分而治之的方法)设法仅执行超过2600时,管理超过6100次操作事实上,顺序方法都比并行方法快得多.

现在,在一个可以更容易并行运行的情况下 - 例如,Person#getAge()函数比只是一个吸气剂复杂得多 - 并行方法可能是一个更好的解决方案.最后,这一切都取决于被测试案例中并行运行的效率.

另一件需要记住的事情是:如果有疑问,请做一个适当的微观基准.;-)