use*_*721 4 python dictionary list pandas
我有一个需要在 Python 中聚合的字典列表:
data = [{"startDate": 123, "endDate": 456, "campaignName": "abc", "campaignCfid": 789, "budgetImpressions": 10},
{"startDate": 123, "endDate": 456, "campaignName": "abc", "campaignCfid": 789, "budgetImpressions": 50},
{"startDate": 456, "endDate": 789, "campaignName": "def", "campaignCfid": 123, "budgetImpressions": 80}]
Run Code Online (Sandbox Code Playgroud)
我希望根据budgetImpressions 进行汇总。
所以最终的结果应该是:
data = [{"startDate": 123, "endDate": 456, "campaignName": "abc", "campaignCfid": 789, "budgetImpressions": 60},
{"startDate": 456, "endDate": 789, "campaignName": "def", "campaignCfid": 123, "budgetImpressions": 80}]
Run Code Online (Sandbox Code Playgroud)
请注意,具有特定活动名称的每个条目将始终具有相同的对应活动 Cfid、开始日期和结束日期。
这可以在 Python 中完成吗?我试过使用 itertools 没有太大成功。使用 Pandas 会是更好的方法吗?
只是为了证明有时python非常适合在以下方面做这种事情:
In [11]: from collections import Counter
from itertools import groupby
In [12]: data = [{"startDate": 123, "endDate": 456, "campaignName": "abc", "campaignCfid": 789, "budgetImpressions": 10}, {"startDate": 123, "endDate": 456, "campaignName": "abc", "campaignCfid": 789, "budgetImpressions": 50}, {"startDate": 456, "endDate": 789, "campaignName": "def", "campaignCfid": 123, "budgetImpressions": 80}]
In [13]: g = groupby(data, lambda x: x.pop('campaignName'))
In [14]: d = {}
for campaign, campaign_data in g:
c = Counter()
for row in campaign_data: c.update(row)
d[campaign] = c # if you want a dict rather than Counter, return dict(c) here
In [15]: d
Out[15]:
{'abc': Counter({'campaignCfid': 1578, 'endDate': 912, 'startDate': 246, 'budgetImpressions': 60}),
'def': Counter({'endDate': 789, 'startDate': 456, 'campaignCfid': 123, 'budgetImpressions': 80})}
Run Code Online (Sandbox Code Playgroud)
如果您已经拥有此列表/字典集合,那么将其提升到 DataFrame 没有任何意义,留在纯 python 中通常更便宜。
是的,使用熊猫。这很棒。您可以使用该groupby
功能并按总和进行聚合,然后将输出转换为字典列表(如果这正是您想要的)。
import pandas as pd
data = [{"startDate": 123, "endDate": 456, "campaignName": 'abc',
"campaignCfid": 789, "budgetImpressions": 10},
{"startDate": 123, "endDate": 456, "campaignName": 'abc',
"campaignCfid": 789, "budgetImpressions": 50},
{"startDate": 456, "endDate": 789, "campaignName": 'def',
"campaignCfid": 123, "budgetImpressions": 80}]
df = pd.DataFrame(data)
grouped = df.groupby(['startDate', 'endDate', 'campaignCfid',
'campaignName']).agg(sum)
print grouped.reset_index().to_dict('records')
Run Code Online (Sandbox Code Playgroud)
这打印:
[{'startDate': 123L, 'campaignCfid': 789L, 'endDate': 456L, 'budgetImpressions': 60L, 'campaignName': 'abc'}, {'startDate': 456L, 'campaignCfid': 123L, 'endDate': 789L, 'budgetImpressions': 80L, 'campaignName': 'def'}]
Run Code Online (Sandbox Code Playgroud)