jha*_*rku 11 haskell abstract-syntax-tree free-monad
我试图根据我在网上阅读的一些有用的文献,使用Free monad构建AST.
我有一些关于在实践中使用这些AST的问题,我已经归结为以下示例.
假设我的语言允许以下命令:
{-# LANGUAGE DeriveFunctor #-}
data Command next
= DisplayChar Char next
| DisplayString String next
| Repeat Int (Free Command ()) next
| Done
deriving (Eq, Show, Functor)
Run Code Online (Sandbox Code Playgroud)
我手动定义了Free monad样板:
displayChar :: Char -> Free Command ()
displayChar ch = liftF (DisplayChar ch ())
displayString :: String -> Free Command ()
displayString str = liftF (DisplayString str ())
repeat :: Int -> Free Command () -> Free Command ()
repeat times block = liftF (Repeat times block ())
done :: Free Command r
done = liftF Done
Run Code Online (Sandbox Code Playgroud)
这允许我指定如下的程序:
prog :: Free Command r
prog =
do displayChar 'A'
displayString "abc"
repeat 5 $
displayChar 'Z'
displayChar '\n'
done
Run Code Online (Sandbox Code Playgroud)
现在,我想执行我的程序,这似乎很简单.
execute :: Free Command r -> IO ()
execute (Free (DisplayChar ch next)) = putChar ch >> execute next
execute (Free (DisplayString str next)) = putStr str >> execute next
execute (Free (Repeat n block next)) = forM_ [1 .. n] (\_ -> execute block) >> execute next
execute (Free Done) = return ()
execute (Pure r) = return ()
Run Code Online (Sandbox Code Playgroud)
和
?> execute prog
AabcZZZZZ
Run Code Online (Sandbox Code Playgroud)
好的.这一切都很好,但现在我想了解我的AST,并对其执行转换.想想编译器中的优化.
这里有一个简单的例子:如果一个Repeat块只包含DisplayChar命令,那么我想用适当的替换整个东西DisplayString.换句话说,我想变换repeat 2 (displayChar 'A' >> displayChar 'B')用displayString "ABAB".
这是我的尝试:
optimize c@(Free (Repeat n block next)) =
if all isJust charsToDisplay then
let chars = catMaybes charsToDisplay
in
displayString (concat $ replicate n chars) >> optimize next
else
c >> optimize next
where
charsToDisplay = project getDisplayChar block
optimize (Free (DisplayChar ch next)) = displayChar ch >> optimize next
optimize (Free (DisplayString str next)) = displayString str >> optimize next
optimize (Free Done) = done
optimize c@(Pure r) = c
getDisplayChar (Free (DisplayChar ch _)) = Just ch
getDisplayChar _ = Nothing
project :: (Free Command a -> Maybe u) -> Free Command a -> [Maybe u]
project f = maybes
where
maybes (Pure a) = []
maybes c@(Free cmd) =
let build next = f c : maybes next
in
case cmd of
DisplayChar _ next -> build next
DisplayString _ next -> build next
Repeat _ _ next -> build next
Done -> []
Run Code Online (Sandbox Code Playgroud)
观察GHCI中的AST表明这是正确的,实际上
?> optimize $ repeat 3 (displayChar 'A' >> displayChar 'B')
Free (DisplayString "ABABAB" (Pure ()))
?> execute . optimize $ prog
AabcZZZZZ
?> execute prog
AabcZZZZZ
Run Code Online (Sandbox Code Playgroud)
但我不开心.在我看来,这段代码是重复的.每次我想要检查它时,我必须定义如何遍历我的AST,或者定义像我project这样的函数给我一个视图.当我想修改树时,我必须做同样的事情.
所以,我的问题是:这种方法是我唯一的选择吗?我可以在我的AST上进行模式匹配而不需要处理大量的嵌套吗?我可以以一致且通用的方式遍历树(可能是Zippers,Traversable,还是其他东西)?这里通常采取什么方法?
整个文件如下:
{-# LANGUAGE DeriveFunctor #-}
module Main where
import Prelude hiding (repeat)
import Control.Monad.Free
import Control.Monad (forM_)
import Data.Maybe (catMaybes, isJust)
main :: IO ()
main = execute prog
prog :: Free Command r
prog =
do displayChar 'A'
displayString "abc"
repeat 5 $
displayChar 'Z'
displayChar '\n'
done
optimize c@(Free (Repeat n block next)) =
if all isJust charsToDisplay then
let chars = catMaybes charsToDisplay
in
displayString (concat $ replicate n chars) >> optimize next
else
c >> optimize next
where
charsToDisplay = project getDisplayChar block
optimize (Free (DisplayChar ch next)) = displayChar ch >> optimize next
optimize (Free (DisplayString str next)) = displayString str >> optimize next
optimize (Free Done) = done
optimize c@(Pure r) = c
getDisplayChar (Free (DisplayChar ch _)) = Just ch
getDisplayChar _ = Nothing
project :: (Free Command a -> Maybe u) -> Free Command a -> [Maybe u]
project f = maybes
where
maybes (Pure a) = []
maybes c@(Free cmd) =
let build next = f c : maybes next
in
case cmd of
DisplayChar _ next -> build next
DisplayString _ next -> build next
Repeat _ _ next -> build next
Done -> []
execute :: Free Command r -> IO ()
execute (Free (DisplayChar ch next)) = putChar ch >> execute next
execute (Free (DisplayString str next)) = putStr str >> execute next
execute (Free (Repeat n block next)) = forM_ [1 .. n] (\_ -> execute block) >> execute next
execute (Free Done) = return ()
execute (Pure r) = return ()
data Command next
= DisplayChar Char next
| DisplayString String next
| Repeat Int (Free Command ()) next
| Done
deriving (Eq, Show, Functor)
displayChar :: Char -> Free Command ()
displayChar ch = liftF (DisplayChar ch ())
displayString :: String -> Free Command ()
displayString str = liftF (DisplayString str ())
repeat :: Int -> Free Command () -> Free Command ()
repeat times block = liftF (Repeat times block ())
done :: Free Command r
done = liftF Done
Run Code Online (Sandbox Code Playgroud)
use*_*038 10
如果您的问题是使用样板,如果您使用,则不会绕过它Free!你总是会在每个级别上遇到额外的构造函数.
但另一方面,如果您正在使用Free,您可以通过一种非常简单的方法来推广数据结构的递归.你可以从头开始写这个,但是我使用了这个recursion-schemes包:
import Data.Functor.Foldable
data (:+:) f g a = L (f a) | R (g a) deriving (Functor, Eq, Ord, Show)
type instance Base (Free f a) = f :+: Const a
instance (Functor f) => Foldable (Free f a) where
project (Free f) = L f
project (Pure a) = R (Const a)
instance Functor f => Unfoldable (Free f a) where
embed (L f) = Free f
embed (R (Const a)) = Pure a
instance Functor f => Unfoldable (Free f a) where
embed (L f) = Free f
embed (R (Const a)) = Pure a
Run Code Online (Sandbox Code Playgroud)
如果您对此不熟悉(请阅读文档),但基本上您需要知道的是project获取一些数据,例如Free f a,并将其"展开"一级,产生类似的东西(f :+: Const a) (Free f a).现在,你已经给普通的功能,如fmap,Data.Foldable.foldMap等,访问您的数据的结构中,由于仿函数的参数是子树.
执行很简单,虽然不简单:
execute :: Free Command r -> IO ()
execute = cata go where
go (L (DisplayChar ch next)) = putChar ch >> next
go (L (DisplayString str next)) = putStr str >> next
go (L (Repeat n block next)) = forM_ [1 .. n] (const $ execute block) >> next
go (L Done) = return ()
go (R _) = return ()
Run Code Online (Sandbox Code Playgroud)
但是,简化变得更容易.我们可以定义具有和实例的所有数据类型的简化:FoldableUnfoldable
reduce :: (Foldable t, Functor (Base t), Unfoldable t) => (t -> Maybe t) -> t -> t
reduce rule x = let y = embed $ fmap (reduce rule) $ project x in
case rule y of
Nothing -> y
Just y' -> y'
Run Code Online (Sandbox Code Playgroud)
简化规则只需要简化AST的一个级别(即最顶层).然后,如果简化可以应用于子结构,它也将在那里执行.注意上面的reduce工作是自下而上的; 你也可以自上而下减少:
reduceTD :: (Foldable t, Functor (Base t), Unfoldable t) => (t -> Maybe t) -> t -> t
reduceTD rule x = embed $ fmap (reduceTD rule) $ project y
where y = case rule x of
Nothing -> x
Just x' -> x'
Run Code Online (Sandbox Code Playgroud)
您的示例简化规则可以非常简单地编写:
getChrs :: (Command :+: Const ()) (Maybe String) -> Maybe String
getChrs (L (DisplayChar c n)) = liftA (c:) n
getChrs (L Done) = Just []
getChrs (R _) = Just []
getChrs _ = Nothing
optimize (Free (Repeat n dc next)) = do
chrs <- cata getChrs dc
return $ Free $ DisplayString (concat $ map (replicate n) chrs) next
optimize _ = Nothing
Run Code Online (Sandbox Code Playgroud)
由于您定义数据类型的方式,您无法访问第二个争论Repeat,因此对于类似的内容repeat' 5 (repeat' 3 (displayChar 'Z')) >> done,内部repeat不能简化.如果这是您希望处理的情况,您要么更改数据类型并接受更多样板,要么编写异常:
reduceCmd rule (Free (Repeat n c r)) =
let x = Free (Repeat n (reduceCmd rule c) (reduceCmd rule r)) in
case rule x of
Nothing -> x
Just x' -> x'
reduceCmd rule x = embed $ fmap (reduceCmd rule) $ project x
Run Code Online (Sandbox Code Playgroud)
使用recursion-schemes等可能会使您的代码更容易扩展.但无论如何都没有必要:
execute = iterM go where
go (DisplayChar ch next) = putChar ch >> next
go (DisplayString str next) = putStr str >> next
go (Repeat n block next) = forM_ [1 .. n] (const $ execute block) >> next
go Done = return ()
Run Code Online (Sandbox Code Playgroud)
getChrs不能上网Pure,你的程序将是这样的形式Free Command (),让您应用它之前,你必须得到替换()用Maybe String.
getChrs :: Command (Maybe String) -> Maybe String
getChrs (DisplayChar c n) = liftA (c:) n
getChrs (DisplayString s n) = liftA (s++) n
getChrs Done = Just []
getChrs _ = Nothing
optimize :: Free Command a -> Maybe (Free Command a)
optimize (Free (Repeat n dc next)) = do
chrs <- iter getChrs $ fmap (const $ Just []) dc
return $ Free $ DisplayString (concat $ map (replicate n) chrs) next
optimize _ = Nothing
Run Code Online (Sandbox Code Playgroud)
注意reduce几乎与以前完全相同,除了两件事:project并embed分别用on Free和pattern匹配替换Free; 你需要一个单独的案例Pure.这应该告诉你Foldable并Unfoldable概括"看起来像"的东西Free.
reduce
:: Functor f =>
(Free f a -> Maybe (Free f a)) -> Free f a -> Free f a
reduce rule (Free x) = let y = Free $ fmap (reduce rule) $ x in
case rule y of
Nothing -> y
Just y' -> y'
reduce rule a@(Pure _) = case rule a of
Nothing -> a
Just b -> b
Run Code Online (Sandbox Code Playgroud)
所有其他功能都进行了类似的修改.
这是我使用syb的方法(如Reddit中所述):
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DeriveDataTypeable #-}
module Main where
import Prelude hiding (repeat)
import Data.Data
import Control.Monad (forM_)
import Control.Monad.Free
import Control.Monad.Free.TH
import Data.Generics (everywhere, mkT)
data CommandF next = DisplayChar Char next
| DisplayString String next
| Repeat Int (Free CommandF ()) next
| Done
deriving (Eq, Show, Functor, Data, Typeable)
makeFree ''CommandF
type Command = Free CommandF
execute :: Command () -> IO ()
execute = iterM handle
where
handle = \case
DisplayChar ch next -> putChar ch >> next
DisplayString str next -> putStr str >> next
Repeat n block next -> forM_ [1 .. n] (\_ -> execute block) >> next
Done -> return ()
optimize :: Command () -> Command ()
optimize = optimize' . optimize'
where
optimize' = everywhere (mkT inner)
inner :: Command () -> Command ()
-- char + char becomes string
inner (Free (DisplayChar c1 (Free (DisplayChar c2 next)))) = do
displayString [c1, c2]
next
-- char + string becomes string
inner (Free (DisplayChar c (Free (DisplayString s next)))) = do
displayString $ c : s
next
-- string + string becomes string
inner (Free (DisplayString s1 (Free (DisplayString s2 next)))) = do
displayString $ s1 ++ s2
next
-- Loop unrolling
inner f@(Free (Repeat n block next)) | n < 5 = forM_ [1 .. n] (\_ -> block) >> next
| otherwise = f
inner a = a
prog :: Command ()
prog = do
displayChar 'a'
displayChar 'b'
repeat 1 $ displayChar 'c' >> displayString "def"
displayChar 'g'
displayChar 'h'
repeat 10 $ do
displayChar 'i'
displayChar 'j'
displayString "klm"
repeat 3 $ displayChar 'n'
main :: IO ()
main = do
putStrLn "Original program:"
print prog
putStrLn "Evaluation of original program:"
execute prog
putStrLn "\n"
let opt = optimize prog
putStrLn "Optimized program:"
print opt
putStrLn "Evaluation of optimized program:"
execute opt
putStrLn ""
Run Code Online (Sandbox Code Playgroud)
输出:
$ cabal exec runhaskell ast.hs
Original program:
Free (DisplayChar 'a' (Free (DisplayChar 'b' (Free (Repeat 1 (Free (DisplayChar 'c' (Free (DisplayString "def" (Pure ()))))) (Free (DisplayChar 'g' (Free (DisplayChar 'h' (Free (Repeat 10 (Free (DisplayChar 'i' (Free (DisplayChar 'j' (Free (DisplayString "klm" (Pure ()))))))) (Free (Repeat 3 (Free (DisplayChar 'n' (Pure ()))) (Pure ()))))))))))))))
Evaluation of original program:
abcdefghijklmijklmijklmijklmijklmijklmijklmijklmijklmijklmnnn
Optimized program:
Free (DisplayString "abcdefgh" (Free (Repeat 10 (Free (DisplayString "ijklm" (Pure ()))) (Free (DisplayString "nnn" (Pure ()))))))
Evaluation of optimized program:
abcdefghijklmijklmijklmijklmijklmijklmijklmijklmijklmijklmnnn
Run Code Online (Sandbox Code Playgroud)
有可能使用GHC 7.8 模式同义词去掉*Free*s ,但由于某种原因,上面的代码只能使用GHC 7.6,Free的Data实例似乎缺失了.应该看看...
在您充分利用标准功能之前,请不要考虑拉链,遍历,SYB或镜头Free.您的execute,optimize并且project只是标准的免费monad递归方案,已在包中提供:
optimize :: Free Command a -> Free Command a
optimize = iterM $ \f -> case f of
c@(Repeat n block next) ->
let charsToDisplay = project getDisplayChar block in
if all isJust charsToDisplay then
let chars = catMaybes charsToDisplay in
displayString (concat $ replicate n chars) >> next
else
liftF c >> next
DisplayChar ch next -> displayChar ch >> next
DisplayString str next -> displayString str >> next
Done -> done
getDisplayChar :: Command t -> Maybe Char
getDisplayChar (DisplayChar ch _) = Just ch
getDisplayChar _ = Nothing
project' :: (Command [u] -> u) -> Free Command [u] -> [u]
project' f = iter $ \c -> f c : case c of
DisplayChar _ next -> next
DisplayString _ next -> next
Repeat _ _ next -> next
Done -> []
project :: (Command [u] -> u) -> Free Command a -> [u]
project f = project' f . fmap (const [])
execute :: Free Command () -> IO ()
execute = iterM $ \f -> case f of
DisplayChar ch next -> putChar ch >> next
DisplayString str next -> putStr str >> next
Repeat n block next -> forM_ [1 .. n] (\_ -> execute block) >> next
Done -> return ()
Run Code Online (Sandbox Code Playgroud)
由于你的组件最多只有一个延续,你可以找到一个聪明的方法来摆脱所有这些>> next.
| 归档时间: |
|
| 查看次数: |
1540 次 |
| 最近记录: |