B. *_*vis 4 merge for-loop r date sequence
提前致谢.
我正在尝试添加三个不同个体的观察期内未包含的缺失日期值.
我的数据如下所示:
IndID Date Event Number Percent
1 P01 2011-03-04 1 2 0.390
2 P01 2011-03-11 1 2 0.975
3 P01 2011-03-13 0 9 0.795
4 P01 2011-03-14 0 10 0.516
5 P01 2011-03-15 0 1 0.117
6 P01 2011-03-17 0 7 0.093
Run Code Online (Sandbox Code Playgroud)
IndID
是个人ID( ,P01
,).P03
显然是日期.是一个二进制变量,指示是否发生了事件(= no和= yes).
列并没有直接关系,但需要被保存和这里因此包括在内.P06
Date
Event
0
1
Number
Percent
我的样本数据框(PostData
)包含在下面dput
.
对于每一个IndID
,第一个和最后Date
一个分别是观察期的开始和结束,其中缺少日期.在这里,我的目标是为每个人添加缺少的日期,并0
在Event
列中添加一个.其他列(Number
和Percent
)可以保持空白.
这篇文章很有用,但缺乏关于我的主要问题的信息 - 多个人.
观察期间为每个单独的是从min(PostData$Date)
到max(PostData$Date)
.我一直在尝试为每个人创建一个完整的日期序列,然后merge
使用for
循环中的现有数据框.肯定有更好的主意.
任何建议表示赞赏.
PostData <-structure(list(IndID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L), .Label = c("P01", "P02", "P03", "P05", "P06", "P07",
"P08", "P09", "P10", "P11", "P12", "P13"), class = "factor"),
Date = structure(c(1299196800, 1299801600, 1299974400, 1300060800,
1300147200, 1300320000, 1300406400, 1310083200, 1310169600,
1310515200, 1310774400, 1310947200, 1311033600, 1311292800,
1311552000, 1323129600, 1323388800, 1323648000, 1323993600,
1324080000, 1324166400, 1324339200, 1327622400, 1327795200,
1327881600), class = c("POSIXct", "POSIXt"), tzone = "GMT"),
Event = c(1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L,
0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L), Number = c(2L,
2L, 9L, 10L, 1L, 7L, 5L, 9L, 1L, 4L, 5L, 2L, 0L, 1L, 10L,
5L, 0L, 6L, 5L, 10L, 9L, 4L, 4L, 8L, 1L), Percent = c(0.39,
0.975, 0.795, 0.516, 0.117, 0.093, 0.528, 0.659, 0.308, 0.055,
0.185, 0.761, 0.132, 0.676, 0.368, 0.383, 0.272, 0.113, 0.974,
0.696, 0.941, 0.751, 0.758, 0.29, 0.15)), .Names = c("IndID",
"Date", "Event", "Number", "Percent"), row.names = c(NA, 25L),
class = "data.frame")
Run Code Online (Sandbox Code Playgroud)
基础R版本:
do.call(rbind,
by(
PostData,
PostData$IndID,
function(x) {
out <- merge(
data.frame(
IndID=x$IndID[1],
Date=seq.POSIXt(min(x$Date),max(x$Date),by="1 day")
),
x,
all.x=TRUE
)
out$Event[is.na(out$Event)] <- 0
out
}
)
)
Run Code Online (Sandbox Code Playgroud)
结果:
IndID Date Event Number Percent
P01.1 P01 2011-03-04 1 2 0.390
P01.2 P01 2011-03-05 0 NA NA
P01.3 P01 2011-03-06 0 NA NA
P01.4 P01 2011-03-07 0 NA NA
P01.5 P01 2011-03-08 0 NA NA
P01.6 P01 2011-03-09 0 NA NA
P01.7 P01 2011-03-10 0 NA NA
P01.8 P01 2011-03-11 1 2 0.975
<<etc>>
Run Code Online (Sandbox Code Playgroud)