Pyt*_*ice 3 python convolution
我需要使用以3934.8A为中心的特定参数的高斯函数来卷积下一条曲线.

我看到的问题是我的曲线是一个离散数组,高斯是一个很好定义的连续函数.我怎样才能做到这一点?
要做到这一点,你需要创建一个高斯,它在与曲线相同的空间尺度上离散,然后进行卷积.
具体来说,假设您的原始曲线具有N沿x轴均匀间隔的点(N通常在50到10,000左右之间).那么沿着x轴的点间距将是(physical range)/(digital range) = (3940-3930)/N,并且代码看起来像这样:
dx = float(3940-3930)/N
gx = np.arange(-3*sigma, 3*sigma, dx)
gaussian = np.exp(-(x/sigma)**2/2)
result = np.convolve(original_curve, gaussian, mode="full")
Run Code Online (Sandbox Code Playgroud)
这里是一个以零为中心的高斯,并不包括你所指的偏移(对我来说只会增加混淆,因为卷积本质上是一个翻译操作,所以从已翻译的东西开始是令人困惑的).
我强烈建议将所有内容保存在真实的物理单元中,就像我上面所做的那样 然后很清楚,例如,高斯的宽度是什么,等等.
| 归档时间: |
|
| 查看次数: |
9170 次 |
| 最近记录: |