rns*_*nso 11 dictionary r choropleth
我有以下简单的示例数据,我想在地图上绘制渐变颜色,对应于给定国家/地区的值.
ddf = read.table(text="
country value
USA 10
UK 30
Sweden 50
Japan 70
China 90
Germany 100
France 80
Italy 60
Nepal 40
Nigeria 20
", header=T)
Run Code Online (Sandbox Code Playgroud)
在谷歌搜索,我发现了几个网站.但是,我正在寻找小而清晰的代码,并且最好是快速的(我发现ggplot方法相对较慢).世界地图的分辨率不必高.
我试过以下代码:
library(maptools)
data(wrld_simpl)
plot(wrld_simpl)
Run Code Online (Sandbox Code Playgroud)
具体国家可以如下所示着色:使用[R]地图包 - 在世界地图上的特定国家着色 使用命令:
plot(wrld_simpl, col = c(gray(.80), "red")[grepl("^U", wrld_simpl@data$NAME) + 1])
Run Code Online (Sandbox Code Playgroud)
但是如何以渐变的颜色获得具有上述数据的地图.谢谢你的帮助.
hrb*_*str 10
定义"慢".ggplot提供了一种最灵活的方式,可以在几秒钟的时间内在地图上显示数据.
library(RColorBrewer)
library(maptools)
library(ggplot2)
data(wrld_simpl)
ddf = read.table(text="
country value
'United States' 10
'United Kingdom' 30
'Sweden' 50
'Japan' 70
'China' 90
'Germany' 100
'France' 80
'Italy' 60
'Nepal' 40
'Nigeria' 20", header=TRUE)
# Pascal had a #spiffy solution that is generally faster
plotPascal <- function() {
pal <- colorRampPalette(brewer.pal(9, 'Reds'))(length(ddf$value))
pal <- pal[with(ddf, findInterval(value, sort(unique(value))))]
col <- rep(grey(0.8), length(wrld_simpl@data$NAME))
col[match(ddf$country, wrld_simpl@data$NAME)] <- pal
plot(wrld_simpl, col = col)
}
plotme <- function() {
# align colors to countries
ddf$brk <- cut(ddf$value,
breaks=c(0, sort(ddf$value)),
labels=as.character(ddf[order(ddf$value),]$country),
include.lowest=TRUE)
# this lets us use the contry name vs 3-letter ISO
wrld_simpl@data$id <- wrld_simpl@data$NAME
wrld <- fortify(wrld_simpl, region="id")
wrld <- subset(wrld, id != "Antarctica") # we don't rly need Antarctica
gg <- ggplot()
# setup base map
gg <- gg + geom_map(data=wrld, map=wrld, aes(map_id=id, x=long, y=lat), fill="white", color="#7f7f7f", size=0.25)
# add our colored regions
gg <- gg + geom_map(data=ddf, map=wrld, aes(map_id=country, fill=brk), color="white", size=0.25)
# this sets the scale and, hence, the legend
gg <- gg + scale_fill_manual(values=colorRampPalette(brewer.pal(9, 'Reds'))(length(ddf$value)),
name="Country")
# this gives us proper coords. mercator proj is default
gg <- gg + coord_map()
gg <- gg + labs(x="", y="")
gg <- gg + theme(plot.background = element_rect(fill = "transparent", colour = NA),
panel.border = element_blank(),
panel.background = element_rect(fill = "transparent", colour = NA),
panel.grid = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
legend.position = "right")
gg
}
system.time(plotme())
## user system elapsed
## 1.911 0.005 1.915
system.time(plotthem())
## user system elapsed
## 1.125 0.014 1.138
Run Code Online (Sandbox Code Playgroud)
ggplot代码生成以下映射:

每次运行的时间有所不同,但我没有看到它们相隔超过一分钟(我的系统平均接近0.6米,但我不打算进行大量的基准测试).
UPDATE
随着您的要求不断被淘汰,您可以相当容易地用连续的刻度替换离散刻度.
pal <- colorRampPalette(brewer.pal(9, 'Reds'))(length(ddf$value))
palSz <- 10 # not sure what you really want/need for this range
gg <- gg + scale_fill_gradient2(low = pal[1],
mid = pal[palSz/2],
high = pal[palSz],
midpoint = (max(ddf$value) + min(ddf$value)) / 2,
name="value")
Run Code Online (Sandbox Code Playgroud)

但是,听起来你可能应该坚持@Andy's,rworldmap因为它抽象了复杂性.
And*_*ndy 10
如果你想要更少的代码和更粗糙的分辨率图,你可以使用rworldmap.
library(rworldmap)
#create a map-shaped window
mapDevice('x11')
#join to a coarse resolution map
spdf <- joinCountryData2Map(ddf, joinCode="NAME", nameJoinColumn="country")
mapCountryData(spdf, nameColumnToPlot="value", catMethod="fixedWidth")
Run Code Online (Sandbox Code Playgroud)
可以更改默认分类,颜色和图例,请参阅此RJournal报告.
国家代码而不是名称会更快.

| 归档时间: |
|
| 查看次数: |
15669 次 |
| 最近记录: |