lou*_*ell 13 python pascals-triangle
作为Python的学习经历,我试图编写自己的Pascal三角形版本.它花了我几个小时(因为我刚刚开始),但我出来了这段代码:
pascals_triangle = []
def blank_list_gen(x):
while len(pascals_triangle) < x:
pascals_triangle.append([0])
def pascals_tri_gen(rows):
blank_list_gen(rows)
for element in range(rows):
count = 1
while count < rows - element:
pascals_triangle[count + element].append(0)
count += 1
for row in pascals_triangle:
row.insert(0, 1)
row.append(1)
pascals_triangle.insert(0, [1, 1])
pascals_triangle.insert(0, [1])
pascals_tri_gen(6)
for row in pascals_triangle:
print(row)
Run Code Online (Sandbox Code Playgroud)
返回
[1]
[1, 1]
[1, 0, 1]
[1, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0, 0, 1]
Run Code Online (Sandbox Code Playgroud)
但是,我不知道从哪里开始.我一直在墙上撞了好几个小时.我想强调一点,我不希望你为我做这件事; 只是把我推向正确的方向.作为列表,我的代码返回
[[1], [1, 1], [1, 0, 1], [1, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1]]
Run Code Online (Sandbox Code Playgroud)
谢谢.
编辑:我提出了一些很好的建议,我完全重写了我的代码,但我现在遇到了另一个问题.这是我的代码.
import math
pascals_tri_formula = []
def combination(n, r):
return int((math.factorial(n)) / ((math.factorial(r)) * math.factorial(n - r)))
def for_test(x, y):
for y in range(x):
return combination(x, y)
def pascals_triangle(rows):
count = 0
while count <= rows:
for element in range(count + 1):
[pascals_tri_formula.append(combination(count, element))]
count += 1
pascals_triangle(3)
print(pascals_tri_formula)
Run Code Online (Sandbox Code Playgroud)
但是,我发现输出有点不受欢迎:
[1, 1, 1, 1, 2, 1, 1, 3, 3, 1]
Run Code Online (Sandbox Code Playgroud)
我怎样才能解决这个问题?
Aar*_*all 16
好的代码审查:
import math
# pascals_tri_formula = [] # don't collect in a global variable.
def combination(n, r): # correct calculation of combinations, n choose k
return int((math.factorial(n)) / ((math.factorial(r)) * math.factorial(n - r)))
def for_test(x, y): # don't see where this is being used...
for y in range(x):
return combination(x, y)
def pascals_triangle(rows):
result = [] # need something to collect our results in
# count = 0 # avoidable! better to use a for loop,
# while count <= rows: # can avoid initializing and incrementing
for count in range(rows): # start at 0, up to but not including rows number.
# this is really where you went wrong:
row = [] # need a row element to collect the row in
for element in range(count + 1):
# putting this in a list doesn't do anything.
# [pascals_tri_formula.append(combination(count, element))]
row.append(combination(count, element))
result.append(row)
# count += 1 # avoidable
return result
# now we can print a result:
for row in pascals_triangle(3):
print(row)
Run Code Online (Sandbox Code Playgroud)
打印:
[1]
[1, 1]
[1, 2, 1]
Run Code Online (Sandbox Code Playgroud)
这是"n选择k"的公式(即有多少种不同的方式(无视顺序),从n项的有序列表中,我们可以选择k项):
from math import factorial
def combination(n, k):
"""n choose k, returns int"""
return int((factorial(n)) / ((factorial(k)) * factorial(n - k)))
Run Code Online (Sandbox Code Playgroud)
一位评论者询问这是否与itertools.combinations有关 - 事实确实如此."n选择k"可以通过从组合中获取元素列表的长度来计算:
from itertools import combinations
def pascals_triangle_cell(n, k):
"""n choose k, returns int"""
result = len(list(combinations(range(n), k)))
# our result is equal to that returned by the other combination calculation:
assert result == combination(n, k)
return result
Run Code Online (Sandbox Code Playgroud)
让我们看看这个证明:
from pprint import pprint
ptc = pascals_triangle_cell
>>> pprint([[ptc(0, 0),],
[ptc(1, 0), ptc(1, 1)],
[ptc(2, 0), ptc(2, 1), ptc(2, 2)],
[ptc(3, 0), ptc(3, 1), ptc(3, 2), ptc(3, 3)],
[ptc(4, 0), ptc(4, 1), ptc(4, 2), ptc(4, 3), ptc(4, 4)]],
width = 20)
[[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1]]
Run Code Online (Sandbox Code Playgroud)
我们可以避免重复使用嵌套列表理解:
def pascals_triangle(rows):
return [[ptc(row, k) for k in range(row + 1)] for row in range(rows)]
>>> pprint(pascals_triangle(15))
[[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1],
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1],
[1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1],
[1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1],
[1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1],
[1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1]]
Run Code Online (Sandbox Code Playgroud)
我们可以使用三角形所示的关系递归地定义(效率较低,但可能更加数学上优雅的定义):
def choose(n, k): # note no dependencies on any of the prior code
if k in (0, n):
return 1
return choose(n-1, k-1) + choose(n-1, k)
Run Code Online (Sandbox Code Playgroud)
为了好玩,您可以看到每一行的执行时间越来越长,因为每行必须每次重新计算前一行中的每个元素两次:
for row in range(40):
for k in range(row + 1):
# flush is a Python 3 only argument, you can leave it out,
# but it lets us see each element print as it finishes calculating
print(choose(row, k), end=' ', flush=True)
print()
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1
1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 ...
Run Code Online (Sandbox Code Playgroud)
当你厌倦了观看它时,Ctrl-C退出,速度非常快......
Aar*_*all 11
我知道你想要实现自己,但我解释的最好方法是完成一个实现.这是我会怎么做,这实现依赖于我的Python的功能是如何工作的相当完整的知识,所以你可能不希望使用自己的代码,但它可以让你在正确的方向.
def pascals_triangle(n_rows):
results = [] # a container to collect the rows
for _ in range(n_rows):
row = [1] # a starter 1 in the row
if results: # then we're in the second row or beyond
last_row = results[-1] # reference the previous row
# this is the complicated part, it relies on the fact that zip
# stops at the shortest iterable, so for the second row, we have
# nothing in this list comprension, but the third row sums 1 and 1
# and the fourth row sums in pairs. It's a sliding window.
row.extend([sum(pair) for pair in zip(last_row, last_row[1:])])
# finally append the final 1 to the outside
row.append(1)
results.append(row) # add the row to the results.
return results
Run Code Online (Sandbox Code Playgroud)
用法:
>>> for i in pascals_triangle(6):
... print(i)
...
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
Run Code Online (Sandbox Code Playgroud)
不使用zip,而是使用generator:
def gen(n,r=[]):
for x in range(n):
l = len(r)
r = [1 if i == 0 or i == l else r[i-1]+r[i] for i in range(l+1)]
yield r
Run Code Online (Sandbox Code Playgroud)
例:
print(list(gen(15)))
Run Code Online (Sandbox Code Playgroud)
输出:
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1], [1, 6, 15, 20, 15, 6, 1], [1, 7, 21, 35, 35, 21, 7, 1], [1, 8, 28, 56, 70, 56, 28, 8, 1], [1, 9, 36, 84, 126, 126, 84, 36, 9, 1], [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1], [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1], [1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1], [1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1], [1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1]]
Run Code Online (Sandbox Code Playgroud)
以三角形显示
将其绘制为漂亮的三角形(仅适用于n <7,除此之外,它会变形。ref draw_beautiful适用于n> 7)
对于n <7
def draw(n):
for p in gen(n):
print(' '.join(map(str,p)).center(n*2)+'\n')
Run Code Online (Sandbox Code Playgroud)
例如:
draw(10)
输出:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
Run Code Online (Sandbox Code Playgroud)
任何尺寸
因为我们需要知道最大宽度,所以我们不能使用发电机
def draw_beautiful(n):
ps = list(gen(n))
max = len(' '.join(map(str,ps[-1])))
for p in ps:
print(' '.join(map(str,p)).center(max)+'\n')
Run Code Online (Sandbox Code Playgroud)
示例(2):适用于任何数字:
draw_beautiful(100)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
65021 次 |
| 最近记录: |