use*_*510 5 python loops numpy matrix
是否可以在没有循环的情况下计算多个点积?说你有以下内容:
a = randn(100, 3, 3)
b = randn(100, 3, 3)
Run Code Online (Sandbox Code Playgroud)
我希望获得一个z形状(100,3,3)的数组,以便所有人i
z[i, ...] == dot(a[i, ...], b[i, ...])
Run Code Online (Sandbox Code Playgroud)
换句话说,它验证:
for va, vb, vz in izip(a, b, z):
assert (vq == dot(va, vb)).all()
Run Code Online (Sandbox Code Playgroud)
直截了当的解决方案是:
z = array([dot(va, vb) for va, vb in zip(a, b)])
Run Code Online (Sandbox Code Playgroud)
它使用隐式循环(list comprehension + array).
有更有效的方法来计算z吗?
np.einsum在这里很有用.尝试运行此副本+可粘贴代码:
import numpy as np
a = np.random.randn(100, 3, 3)
b = np.random.randn(100, 3, 3)
z = np.einsum("ijk, ikl -> ijl", a, b)
z2 = np.array([ai.dot(bi) for ai, bi in zip(a, b)])
assert (z == z2).all()
Run Code Online (Sandbox Code Playgroud)
einsum是编译代码并运行得非常快,甚至比较np.tensordot(这里不完全适用,但通常适用).以下是一些统计数据:
In [8]: %timeit z = np.einsum("ijk, ikl -> ijl", a, b)
10000 loops, best of 3: 105 us per loop
In [9]: %timeit z2 = np.array([ai.dot(bi) for ai, bi in zip(a, b)])
1000 loops, best of 3: 1.06 ms per loop
Run Code Online (Sandbox Code Playgroud)
在numpy中尝试爱因斯坦求和:
z = np.einsum('...ij,...jk->...ik', a, b)
Run Code Online (Sandbox Code Playgroud)
它很优雅,不需要你按照要求编写循环.它让我的系统速度提高了4.8倍:
%timeit z = array([dot(va, vb) for va, vb in zip(a, b)])
1000 loops, best of 3: 454 µs per loop
%timeit z = np.einsum('...ij,...jk->...ik', a, b)
10000 loops, best of 3: 94.6 µs per loop
Run Code Online (Sandbox Code Playgroud)
此解决方案仍然使用循环,但速度更快,因为它通过使用outarg避免了不必要的临时数组创建dot:
def dotloop(a,b):
res = empty(a.shape)
for ai,bi,resi in zip(a,b,res):
np.dot(ai, bi, out = resi)
return res
%timeit dotloop(a,b)
1000 loops, best of 3: 453 us per loop
%timeit array([dot(va, vb) for va, vb in zip(a, b)])
1000 loops, best of 3: 843 us per loop
Run Code Online (Sandbox Code Playgroud)