Eka*_*pta 8 c c++ opencv cluster-analysis image-processing
我正在使用opencv进行非静态相机的运动检测.我正在使用一种非常基本的背景减法和阈值处理方法来广泛了解示例视频中的所有内容.在阈值处理之后,我将所有可分离的白色像素"补丁"存储起来,将它们存储为独立的组件并随机地用红色,绿色或蓝色着色.下图显示了足球视频,其中所有这些组件都可见.

我在这些检测到的组件上创建了矩形,我得到了这个图像:

所以我可以在这看到挑战.我想将所有"相似"和附近组件聚集到一个实体中,以便输出图像中的矩形显示一个整体移动的玩家(而不是他的独立肢体).我尝试做K-means聚类,但理想情况下我不知道移动实体的数量,我无法取得任何进展.
请指导我如何做到这一点.谢谢
Zaw*_*Lin 17
这个问题可以通过dbscan聚类算法几乎完美地解决.下面,我提供实现和结果图像.根据dbscan,灰色blob表示异常值或噪声.我只是用盒子作为输入数据.最初,箱中心用于距离功能.但是对于盒子来说,正确表征距离是不够的.因此,当前距离函数使用两个盒子的所有8个角的最小距离.
#include "opencv2/opencv.hpp"
using namespace cv;
#include <map>
#include <sstream>
template <class T>
inline std::string to_string (const T& t)
{
std::stringstream ss;
ss << t;
return ss.str();
}
class DbScan
{
public:
std::map<int, int> labels;
vector<Rect>& data;
int C;
double eps;
int mnpts;
double* dp;
//memoization table in case of complex dist functions
#define DP(i,j) dp[(data.size()*i)+j]
DbScan(vector<Rect>& _data,double _eps,int _mnpts):data(_data)
{
C=-1;
for(int i=0;i<data.size();i++)
{
labels[i]=-99;
}
eps=_eps;
mnpts=_mnpts;
}
void run()
{
dp = new double[data.size()*data.size()];
for(int i=0;i<data.size();i++)
{
for(int j=0;j<data.size();j++)
{
if(i==j)
DP(i,j)=0;
else
DP(i,j)=-1;
}
}
for(int i=0;i<data.size();i++)
{
if(!isVisited(i))
{
vector<int> neighbours = regionQuery(i);
if(neighbours.size()<mnpts)
{
labels[i]=-1;//noise
}else
{
C++;
expandCluster(i,neighbours);
}
}
}
delete [] dp;
}
void expandCluster(int p,vector<int> neighbours)
{
labels[p]=C;
for(int i=0;i<neighbours.size();i++)
{
if(!isVisited(neighbours[i]))
{
labels[neighbours[i]]=C;
vector<int> neighbours_p = regionQuery(neighbours[i]);
if (neighbours_p.size() >= mnpts)
{
expandCluster(neighbours[i],neighbours_p);
}
}
}
}
bool isVisited(int i)
{
return labels[i]!=-99;
}
vector<int> regionQuery(int p)
{
vector<int> res;
for(int i=0;i<data.size();i++)
{
if(distanceFunc(p,i)<=eps)
{
res.push_back(i);
}
}
return res;
}
double dist2d(Point2d a,Point2d b)
{
return sqrt(pow(a.x-b.x,2) + pow(a.y-b.y,2));
}
double distanceFunc(int ai,int bi)
{
if(DP(ai,bi)!=-1)
return DP(ai,bi);
Rect a = data[ai];
Rect b = data[bi];
/*
Point2d cena= Point2d(a.x+a.width/2,
a.y+a.height/2);
Point2d cenb = Point2d(b.x+b.width/2,
b.y+b.height/2);
double dist = sqrt(pow(cena.x-cenb.x,2) + pow(cena.y-cenb.y,2));
DP(ai,bi)=dist;
DP(bi,ai)=dist;*/
Point2d tla =Point2d(a.x,a.y);
Point2d tra =Point2d(a.x+a.width,a.y);
Point2d bla =Point2d(a.x,a.y+a.height);
Point2d bra =Point2d(a.x+a.width,a.y+a.height);
Point2d tlb =Point2d(b.x,b.y);
Point2d trb =Point2d(b.x+b.width,b.y);
Point2d blb =Point2d(b.x,b.y+b.height);
Point2d brb =Point2d(b.x+b.width,b.y+b.height);
double minDist = 9999999;
minDist = min(minDist,dist2d(tla,tlb));
minDist = min(minDist,dist2d(tla,trb));
minDist = min(minDist,dist2d(tla,blb));
minDist = min(minDist,dist2d(tla,brb));
minDist = min(minDist,dist2d(tra,tlb));
minDist = min(minDist,dist2d(tra,trb));
minDist = min(minDist,dist2d(tra,blb));
minDist = min(minDist,dist2d(tra,brb));
minDist = min(minDist,dist2d(bla,tlb));
minDist = min(minDist,dist2d(bla,trb));
minDist = min(minDist,dist2d(bla,blb));
minDist = min(minDist,dist2d(bla,brb));
minDist = min(minDist,dist2d(bra,tlb));
minDist = min(minDist,dist2d(bra,trb));
minDist = min(minDist,dist2d(bra,blb));
minDist = min(minDist,dist2d(bra,brb));
DP(ai,bi)=minDist;
DP(bi,ai)=minDist;
return DP(ai,bi);
}
vector<vector<Rect> > getGroups()
{
vector<vector<Rect> > ret;
for(int i=0;i<=C;i++)
{
ret.push_back(vector<Rect>());
for(int j=0;j<data.size();j++)
{
if(labels[j]==i)
{
ret[ret.size()-1].push_back(data[j]);
}
}
}
return ret;
}
};
cv::Scalar HSVtoRGBcvScalar(int H, int S, int V) {
int bH = H; // H component
int bS = S; // S component
int bV = V; // V component
double fH, fS, fV;
double fR, fG, fB;
const double double_TO_BYTE = 255.0f;
const double BYTE_TO_double = 1.0f / double_TO_BYTE;
// Convert from 8-bit integers to doubles
fH = (double)bH * BYTE_TO_double;
fS = (double)bS * BYTE_TO_double;
fV = (double)bV * BYTE_TO_double;
// Convert from HSV to RGB, using double ranges 0.0 to 1.0
int iI;
double fI, fF, p, q, t;
if( bS == 0 ) {
// achromatic (grey)
fR = fG = fB = fV;
}
else {
// If Hue == 1.0, then wrap it around the circle to 0.0
if (fH>= 1.0f)
fH = 0.0f;
fH *= 6.0; // sector 0 to 5
fI = floor( fH ); // integer part of h (0,1,2,3,4,5 or 6)
iI = (int) fH; // " " " "
fF = fH - fI; // factorial part of h (0 to 1)
p = fV * ( 1.0f - fS );
q = fV * ( 1.0f - fS * fF );
t = fV * ( 1.0f - fS * ( 1.0f - fF ) );
switch( iI ) {
case 0:
fR = fV;
fG = t;
fB = p;
break;
case 1:
fR = q;
fG = fV;
fB = p;
break;
case 2:
fR = p;
fG = fV;
fB = t;
break;
case 3:
fR = p;
fG = q;
fB = fV;
break;
case 4:
fR = t;
fG = p;
fB = fV;
break;
default: // case 5 (or 6):
fR = fV;
fG = p;
fB = q;
break;
}
}
// Convert from doubles to 8-bit integers
int bR = (int)(fR * double_TO_BYTE);
int bG = (int)(fG * double_TO_BYTE);
int bB = (int)(fB * double_TO_BYTE);
// Clip the values to make sure it fits within the 8bits.
if (bR > 255)
bR = 255;
if (bR < 0)
bR = 0;
if (bG >255)
bG = 255;
if (bG < 0)
bG = 0;
if (bB > 255)
bB = 255;
if (bB < 0)
bB = 0;
// Set the RGB cvScalar with G B R, you can use this values as you want too..
return cv::Scalar(bB,bG,bR); // R component
}
int main(int argc,char** argv )
{
Mat im = imread("c:/data/football.png",0);
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Vec4i> hierarchy;
findContours(im.clone(), contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Rect> boxes;
for(size_t i = 0; i < contours.size(); i++)
{
Rect r = boundingRect(contours[i]);
boxes.push_back(r);
}
DbScan dbscan(boxes,20,2);
dbscan.run();
//done, perform display
Mat grouped = Mat::zeros(im.size(),CV_8UC3);
vector<Scalar> colors;
RNG rng(3);
for(int i=0;i<=dbscan.C;i++)
{
colors.push_back(HSVtoRGBcvScalar(rng(255),255,255));
}
for(int i=0;i<dbscan.data.size();i++)
{
Scalar color;
if(dbscan.labels[i]==-1)
{
color=Scalar(128,128,128);
}else
{
int label=dbscan.labels[i];
color=colors[label];
}
putText(grouped,to_string(dbscan.labels[i]),dbscan.data[i].tl(), FONT_HERSHEY_COMPLEX,.5,color,1);
drawContours(grouped,contours,i,color,-1);
}
imshow("grouped",grouped);
imwrite("c:/data/grouped.jpg",grouped);
waitKey(0);
}
Run Code Online (Sandbox Code Playgroud)

| 归档时间: |
|
| 查看次数: |
13088 次 |
| 最近记录: |