Ver*_*rix 9 python arrays gis numpy cumsum
我对python和numpy很新,很抱歉如果我误用了一些术语.
我已经将光栅转换为2D numpy数组,希望能快速高效地对其进行计算.
我需要在numpy数组中得到累积和,这样,对于每个值,我生成所有小于或等于该值的值的总和,并将该值写入新数组.我需要以这种方式遍历整个阵列.
我还需要在1到100之间缩放输出,但这看起来
更简单.
尝试通过示例澄清:
array([[ 4, 1 , 3 , 2] dtype=float32)
Run Code Online (Sandbox Code Playgroud)
我想要输出值(只是手工做第一行)来读取:
array([[ 10, 1 , 6 , 3], etc.
Run Code Online (Sandbox Code Playgroud)
有关如何做到这一点的任何想法?
提前致谢!
对于任何有兴趣的人来说,近乎完成的脚本:
#Generate Cumulative Thresholds
#5/15/14
import os
import sys
import arcpy
import numpy as np
#Enable overwriting output data
arcpy.env.overwriteOutput=True
#Set working directory
os.chdir("E:/NSF Project/Salamander_Data/Continuous_Rasters/Canadian_GCM/2020/A2A/")
#Set geoprocessing variables
inRaster = "zero_eurycea_cirrigera_CA2A2020.tif"
des = arcpy.Describe(inRaster)
sr = des.SpatialReference
ext = des.Extent
ll = arcpy.Point(ext.XMin,ext.YMin)
#Convert GeoTIFF to numpy array
a = arcpy.RasterToNumPyArray(inRaster)
#Flatten for calculations
a.flatten()
#Find unique values, and record their indices to a separate object
a_unq, a_inv = np.unique(a, return_inverse=True)
#Count occurences of array indices
a_cnt = np.bincount(a_inv)
#Cumulatively sum the unique values multiplied by the number of
#occurences, arrange sums as initial array
b = np.cumsum(a_unq * a_cnt)[a_inv]
#Divide all values by 10 (reverses earlier multiplication done to
#facilitate accurate translation of ASCII scientific notation
#values < 1 to array)
b /= 10
#Rescale values between 1 and 100
maxval = np.amax(b)
b /= maxval
b *= 100
#Restore flattened array to shape of initial array
c = b.reshape(a.shape)
#Convert the array back to raster format
outRaster = arcpy.NumPyArrayToRaster(c,ll,des.meanCellWidth,des.meanCellHeight)
#Set output projection to match input
arcpy.DefineProjection_management(outRaster, sr)
#Save the raster as a TIFF
outRaster.save("C:/Users/mkcarte2/Desktop/TestData/outRaster.tif")
sys.exit()
Run Code Online (Sandbox Code Playgroud)
Jai*_*ime 11
根据您希望如何处理重复,这可能有效:
In [40]: a
Out[40]: array([4, 4, 2, 1, 0, 3, 3, 1, 0, 2])
In [41]: a_unq, a_inv = np.unique(a, return_inverse=True)
In [42]: a_cnt = np.bincount(a_inv)
In [44]: np.cumsum(a_unq * a_cnt)[a_inv]
Out[44]: array([20, 20, 6, 2, 0, 12, 12, 2, 0, 6], dtype=int64)
Run Code Online (Sandbox Code Playgroud)
a
你的阵列当然在哪里被压平,然后你必须重新塑造成原始的形状.
当然,一旦numpy 1.9出局,你可以将上面的第41和42行压缩成单个,更快:
a_unq, a_inv, a_cnt = np.unique(a, return_inverse=True, return_counts=True)
Run Code Online (Sandbox Code Playgroud)