Fre*_*rik 6 error-handling haskell either
我有一个Web API的小型小样本应用程序,它采用了一个巨大的JSON文档,并且应该分解它并报告每个部分的错误消息.
下面的代码是使用EitherT(和错误包)的一个工作示例.但是,问题是EitherT在遇到的第一个Left上打破了计算,只返回它看到的第一个"错误".我想要的是一个错误消息列表,所有可能产生的消息.例如,如果第一行runEitherT
失败,那么就没有什么可以做的了.但是如果第二行失败,那么我们仍然可以尝试运行后续行,因为它们对第二行没有数据依赖性.因此,理论上我们可以一次性生成更多(不一定是所有)错误消息.
是否可以懒惰地运行所有计算并返回我们可以找到的所有错误消息?
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Data.ByteString.Lazy.Char8 (pack)
import Web.Scotty as S
import Network.Wai.Middleware.RequestLogger
import Data.Aeson
import Data.Aeson.Types
import Control.Lens hiding ((.=), (??))
import Data.Aeson.Lens
import qualified Data.Text as T
import Control.Error
import Control.Applicative
import qualified Data.HashMap.Strict as H
import Network.HTTP.Types
data TypeOne = TypeOne T.Text TypeTwo TypeThree
deriving (Show)
data TypeTwo = TypeTwo Double
deriving (Show)
data TypeThree = TypeThree Double
deriving (Show)
main :: IO ()
main = scotty 3000 $ do
middleware logStdoutDev
post "/pdor" $ do
api_key <- param "api_key"
input <- param "input"
typeOne <- runEitherT $ do
result <- (decode (pack input) :: Maybe Value) ?? "Could not parse. Input JSON document is malformed"
typeTwoObj <- (result ^? key "typeTwo") ?? "Could not find key typeTwo in JSON document."
typeThreeObj <- (result ^? key "typeThree") ?? "Could not find key typeThree in JSON document."
name <- (result ^? key "name" . _String) ?? "Could not find key name in JSON document."
typeTwo <- hoistEither $ prependLeft "Error when parsing TypeTwo: " $ parseEither jsonTypeTwo typeTwoObj
typeThree <- hoistEither $ prependLeft "Error when parsing TypeThree: " $ parseEither jsonTypeThree typeThreeObj
return $ TypeOne name typeTwo typeThree
case typeOne of
Left errorMsg -> do
_ <- status badRequest400
S.json $ object ["error" .= errorMsg]
Right _ ->
-- do something with the parsed Haskell type
S.json $ object ["api_key" .= (api_key :: String), "message" .= ("success" :: String)]
prependLeft :: String -> Either String a -> Either String a
prependLeft msg (Left s) = Left (msg ++ s)
prependLeft _ x = x
jsonTypeTwo :: Value -> Parser TypeTwo
jsonTypeTwo (Object v) = TypeTwo <$> v .: "val"
jsonTypeTwo _ = fail $ "no data present for TypeTwo"
jsonTypeThree :: Value -> Parser TypeThree
jsonTypeThree (Object v) = TypeThree <$> v .: "val"
jsonTypeThree _ = fail $ "no data present for TypeThree"
Run Code Online (Sandbox Code Playgroud)
如果有人有一些建议,也可以接受重构建议.
正如我在评论中提到的,您至少有两种累积错误的方法.下面我详细说明这些.我们需要这些进口:
import Control.Applicative
import Data.Monoid
import Data.These
Run Code Online (Sandbox Code Playgroud)
TheseT
单子变压器免责声明: 在包中TheseT
被称为.ChronicleT
these
看一下These
数据类型的定义:
data These a b = This a | That b | These a b
Run Code Online (Sandbox Code Playgroud)
这里This
和That
对应于Left
和Right
的Either
数据类型.These
数据构造函数是实现累积功能的原因Monad
:它包含结果(类型b
)和先前错误的集合(类型集合a
).
利用已有的These
数据类型定义,我们可以轻松创建类似ErrorT
monad变换器:
newtype TheseT e m a = TheseT {
runTheseT :: m (These e a)
}
Run Code Online (Sandbox Code Playgroud)
TheseT
是以Monad
下列方式的实例:
instance Functor m => Functor (TheseT e m) where
fmap f (TheseT m) = TheseT (fmap (fmap f) m)
instance (Monoid e, Applicative m) => Applicative (TheseT e m) where
pure x = TheseT (pure (pure x))
TheseT f <*> TheseT x = TheseT (liftA2 (<*>) f x)
instance (Monoid e, Monad m) => Monad (TheseT e m) where
return x = TheseT (return (return x))
m >>= f = TheseT $ do
t <- runTheseT m
case t of
This e -> return (This e)
That x -> runTheseT (f x)
These _ x -> do
t' <- runTheseT (f x)
return (t >> t') -- this is where errors get concatenated
Run Code Online (Sandbox Code Playgroud)
Applicative
积累 ErrorT
免责声明:由于您已经在m (Either e a)
newtype包装器中工作,因此这种方法更容易适应,但它仅适用于Applicative
设置.
如果实际代码仅使用Applicative
接口,我们可以通过ErrorT
更改其Applicative
实例来逃避.
让我们从一个非变压器版本开始:
data Accum e a = ALeft e | ARight a
instance Functor (Accum e) where
fmap f (ARight x) = ARight (f x)
fmap _ (ALeft e) = ALeft e
instance Monoid e => Applicative (Accum e) where
pure = ARight
ARight f <*> ARight x = ARight (f x)
ALeft e <*> ALeft e' = ALeft (e <> e')
ALeft e <*> _ = ALeft e
_ <*> ALeft e = ALeft e
Run Code Online (Sandbox Code Playgroud)
请注意,在定义时,<*>
我们知道双方是否都是ALeft
s,因此可以执行<>
.如果我们尝试定义相应的Monad
实例,我们会失败:
instance Monoid e => Monad (Accum e) where
return = ARight
ALeft e >>= f = -- we can't apply f
Run Code Online (Sandbox Code Playgroud)
所以Monad
我们可能拥有的唯一例子是Either
.但后来ap
不一样<*>
:
Left a <*> Left b ? Left (a <> b)
Left a `ap` Left b ? Left a
Run Code Online (Sandbox Code Playgroud)
所以我们只能Accum
用作Applicative
.
现在我们可以Applicative
基于以下定义变换器Accum
:
newtype AccErrorT e m a = AccErrorT {
runAccErrorT :: m (Accum e a)
}
instance (Functor m) => Functor (AccErrorT e m) where
fmap f (AccErrorT m) = AccErrorT (fmap (fmap f) m)
instance (Monoid e, Applicative m) => Applicative (AccErrorT e m) where
pure x = AccErrorT (pure (pure x))
AccErrorT f <*> AccErrorT x = AccErrorT (liftA2 (<*>) f x)
Run Code Online (Sandbox Code Playgroud)
请注意,这AccErrorT e m
基本上是Compose m (Accum e)
.
编辑:
AccError
AccValidation
在validation
包中被称为.