我有一个pandas DataFrame , df_test. 它包含一个列'size',表示以字节为单位的大小.我使用以下代码计算了KB,MB和GB:
df_test = pd.DataFrame([
{'dir': '/Users/uname1', 'size': 994933},
{'dir': '/Users/uname2', 'size': 109338711},
])
df_test['size_kb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0, grouping=True) + ' KB')
df_test['size_mb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 2, grouping=True) + ' MB')
df_test['size_gb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 3, grouping=True) + ' GB')
df_test
dir size size_kb size_mb size_gb
0 /Users/uname1 994933 971.6 KB 0.9 MB 0.0 GB
1 /Users/uname2 109338711 106,776.1 KB 104.3 MB 0.1 GB
[2 rows x 5 columns]
Run Code Online (Sandbox Code Playgroud)
我已经运行了超过120,000行,每列需要大约2.97秒*3 = ~9秒根据%timeit.
无论如何我可以加快速度吗?例如,我可以不应用一次从应用和运行它返回一个列3次,我可以在一次传递中返回所有三列以插回原始数据帧吗?
我发现的其他问题都想要获取多个值并返回单个值.我想获取单个值并返回多个列.
Nel*_*z11 71
这是一个老问题,但为了完整性,您可以从包含新数据的应用函数返回一个Series,从而无需迭代三次.传递axis=1给apply函数将函数应用于sizes数据帧的每一行,返回一系列以添加到新的数据帧.此系列包含新值以及原始数据.
def sizes(s):
s['size_kb'] = locale.format("%.1f", s['size'] / 1024.0, grouping=True) + ' KB'
s['size_mb'] = locale.format("%.1f", s['size'] / 1024.0 ** 2, grouping=True) + ' MB'
s['size_gb'] = locale.format("%.1f", s['size'] / 1024.0 ** 3, grouping=True) + ' GB'
return s
df_test = df_test.append(rows_list)
df_test = df_test.apply(sizes, axis=1)
Run Code Online (Sandbox Code Playgroud)
Jes*_*sse 41
使用apply和zip将比Series方式快3倍.
def sizes(s):
return locale.format("%.1f", s / 1024.0, grouping=True) + ' KB', \
locale.format("%.1f", s / 1024.0 ** 2, grouping=True) + ' MB', \
locale.format("%.1f", s / 1024.0 ** 3, grouping=True) + ' GB'
df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = zip(*df_test['size'].apply(sizes))
Run Code Online (Sandbox Code Playgroud)
测试结果如下:
Separate df.apply():
100 loops, best of 3: 1.43 ms per loop
Return Series:
100 loops, best of 3: 2.61 ms per loop
Return tuple:
1000 loops, best of 3: 819 µs per loop
Run Code Online (Sandbox Code Playgroud)
jau*_*net 30
一些当前的回复工作正常,但我想提供另一个,也许更多"pandifyed"选项.这对我来说适用于当前的pandas 0.23(不确定它是否适用于以前的版本):
import pandas as pd
df_test = pd.DataFrame([
{'dir': '/Users/uname1', 'size': 994933},
{'dir': '/Users/uname2', 'size': 109338711},
])
def sizes(s):
a = locale.format("%.1f", s['size'] / 1024.0, grouping=True) + ' KB'
b = locale.format("%.1f", s['size'] / 1024.0 ** 2, grouping=True) + ' MB'
c = locale.format("%.1f", s['size'] / 1024.0 ** 3, grouping=True) + ' GB'
return a, b, c
df_test[['size_kb', 'size_mb', 'size_gb']] = df_test.apply(sizes, axis=1, result_type="expand")
Run Code Online (Sandbox Code Playgroud)
请注意,技巧是在result_type参数上apply,将其结果扩展为DataFrame可以直接分配给新/旧列的参数.
Roc*_*y K 16
顶级答案之间的表现差异很大,Jesse & famaral42 已经讨论过这一点,但值得分享顶级答案之间的公平比较,并详细阐述 Jesse 答案的一个微妙但重要的细节:参数传递给功能,也会影响性能。
(Python 3.7.4,熊猫 1.0.3)
import pandas as pd
import locale
import timeit
def create_new_df_test():
df_test = pd.DataFrame([
{'dir': '/Users/uname1', 'size': 994933},
{'dir': '/Users/uname2', 'size': 109338711},
])
return df_test
def sizes_pass_series_return_series(series):
series['size_kb'] = locale.format_string("%.1f", series['size'] / 1024.0, grouping=True) + ' KB'
series['size_mb'] = locale.format_string("%.1f", series['size'] / 1024.0 ** 2, grouping=True) + ' MB'
series['size_gb'] = locale.format_string("%.1f", series['size'] / 1024.0 ** 3, grouping=True) + ' GB'
return series
def sizes_pass_series_return_tuple(series):
a = locale.format_string("%.1f", series['size'] / 1024.0, grouping=True) + ' KB'
b = locale.format_string("%.1f", series['size'] / 1024.0 ** 2, grouping=True) + ' MB'
c = locale.format_string("%.1f", series['size'] / 1024.0 ** 3, grouping=True) + ' GB'
return a, b, c
def sizes_pass_value_return_tuple(value):
a = locale.format_string("%.1f", value / 1024.0, grouping=True) + ' KB'
b = locale.format_string("%.1f", value / 1024.0 ** 2, grouping=True) + ' MB'
c = locale.format_string("%.1f", value / 1024.0 ** 3, grouping=True) + ' GB'
return a, b, c
Run Code Online (Sandbox Code Playgroud)
结果如下:
# 1 - Accepted (Nels11 Answer) - (pass series, return series):
9.82 ms ± 377 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 2 - Pandafied (jaumebonet Answer) - (pass series, return tuple):
2.34 ms ± 48.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 3 - Tuples (pass series, return tuple then zip):
1.36 ms ± 62.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# 4 - Tuples (Jesse Answer) - (pass value, return tuple then zip):
752 µs ± 18.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
请注意如何返回元组是最快的方法,但是什么传递中作为一个参数,也是影响性能。代码中的差异是细微的,但性能改进是显着的。
测试 #4(传入单个值)的速度是测试 #3(通过一系列)的两倍,即使执行的操作表面上是相同的。
但还有更多...
# 1a - Accepted (Nels11 Answer) - (pass series, return series, new columns exist):
3.23 ms ± 141 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 2a - Pandafied (jaumebonet Answer) - (pass series, return tuple, new columns exist):
2.31 ms ± 39.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 3a - Tuples (pass series, return tuple then zip, new columns exist):
1.36 ms ± 58.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# 4a - Tuples (Jesse Answer) - (pass value, return tuple then zip, new columns exist):
694 µs ± 3.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Run Code Online (Sandbox Code Playgroud)
在某些情况下(#1a 和 #4a),将函数应用于已存在输出列的 DataFrame 比从函数创建它们更快。
下面是运行测试的代码:
# Paste and run the following in ipython console. It will not work if you run it from a .py file.
print('\nAccepted Answer (pass series, return series, new columns dont exist):')
df_test = create_new_df_test()
%timeit result = df_test.apply(sizes_pass_series_return_series, axis=1)
print('Accepted Answer (pass series, return series, new columns exist):')
df_test = create_new_df_test()
df_test = pd.concat([df_test, pd.DataFrame(columns=['size_kb', 'size_mb', 'size_gb'])])
%timeit result = df_test.apply(sizes_pass_series_return_series, axis=1)
print('\nPandafied (pass series, return tuple, new columns dont exist):')
df_test = create_new_df_test()
%timeit df_test[['size_kb', 'size_mb', 'size_gb']] = df_test.apply(sizes_pass_series_return_tuple, axis=1, result_type="expand")
print('Pandafied (pass series, return tuple, new columns exist):')
df_test = create_new_df_test()
df_test = pd.concat([df_test, pd.DataFrame(columns=['size_kb', 'size_mb', 'size_gb'])])
%timeit df_test[['size_kb', 'size_mb', 'size_gb']] = df_test.apply(sizes_pass_series_return_tuple, axis=1, result_type="expand")
print('\nTuples (pass series, return tuple then zip, new columns dont exist):')
df_test = create_new_df_test()
%timeit df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = zip(*df_test.apply(sizes_pass_series_return_tuple, axis=1))
print('Tuples (pass series, return tuple then zip, new columns exist):')
df_test = create_new_df_test()
df_test = pd.concat([df_test, pd.DataFrame(columns=['size_kb', 'size_mb', 'size_gb'])])
%timeit df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = zip(*df_test.apply(sizes_pass_series_return_tuple, axis=1))
print('\nTuples (pass value, return tuple then zip, new columns dont exist):')
df_test = create_new_df_test()
%timeit df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = zip(*df_test['size'].apply(sizes_pass_value_return_tuple))
print('Tuples (pass value, return tuple then zip, new columns exist):')
df_test = create_new_df_test()
df_test = pd.concat([df_test, pd.DataFrame(columns=['size_kb', 'size_mb', 'size_gb'])])
%timeit df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = zip(*df_test['size'].apply(sizes_pass_value_return_tuple))
Run Code Online (Sandbox Code Playgroud)
fam*_*l42 13
真的很酷的答案!谢谢杰西和 jaumebonet!只是关于以下方面的一些观察:
zip(* ...... result_type="expand")虽然 expand 更优雅(pandifyed),但zip 至少 **2x 快。在下面这个简单的示例中,我的速度提高了4 倍。
import pandas as pd
dat = [ [i, 10*i] for i in range(1000)]
df = pd.DataFrame(dat, columns = ["a","b"])
def add_and_sub(row):
add = row["a"] + row["b"]
sub = row["a"] - row["b"]
return add, sub
df[["add", "sub"]] = df.apply(add_and_sub, axis=1, result_type="expand")
# versus
df["add"], df["sub"] = zip(*df.apply(add_and_sub, axis=1))
Run Code Online (Sandbox Code Playgroud)
bor*_*ked 10
使用 apply 和 lambda 可以相当快地完成此操作。只需将多个值作为列表返回,然后使用 to_list()
import pandas as pd
dat = [ [i, 10*i] for i in range(100000)]
df = pd.DataFrame(dat, columns = ["a","b"])
def add_and_div(x):
add = x + 3
div = x / 3
return [add, div]
start = time.time()
df[['c','d']] = df['a'].apply(lambda x: add_and_div(x)).to_list()
end = time.time()
print(end-start) # output: 0.27606
Run Code Online (Sandbox Code Playgroud)
只是另一种可读的方式。此代码将添加三个新列及其值,并返回apply函数中不使用任何参数的序列。
def sizes(s):
val_kb = locale.format("%.1f", s['size'] / 1024.0, grouping=True) + ' KB'
val_mb = locale.format("%.1f", s['size'] / 1024.0 ** 2, grouping=True) + ' MB'
val_gb = locale.format("%.1f", s['size'] / 1024.0 ** 3, grouping=True) + ' GB'
return pd.Series([val_kb,val_mb,val_gb],index=['size_kb','size_mb','size_gb'])
df[['size_kb','size_mb','size_gb']] = df.apply(lambda x: sizes(x) , axis=1)
Run Code Online (Sandbox Code Playgroud)
来自以下的一般示例:https : //pandas.pydata.org/pandas-docs/stable/genic/pandas.DataFrame.apply.html
df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)
#foo bar
#0 1 2
#1 1 2
#2 1 2
Run Code Online (Sandbox Code Playgroud)
小智 5
简单又容易:
def func(item_df):
return [1,'Label 1'] if item_df['col_0'] > 0 else [0,'Label 0']
my_df[['col_1','col2']] = my_df.apply(func, axis=1,result_type='expand')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
39311 次 |
| 最近记录: |