Rod*_*igo 2 aggregate r weighted-average
假设我在R中有这个data.frame:
ages <- data.frame(Indiv = numeric(),
Age = numeric(),
W = numeric())
ages[1,] <- c(1,10,2)
ages[2,] <- c(1,15,5)
ages[3,] <- c(2,5,1)
ages[4,] <- c(2,100,2)
ages
Indiv Age W
1 1 10 2
2 1 15 5
3 2 5 1
4 2 100 2
Run Code Online (Sandbox Code Playgroud)
如果我做:
meanAge <- aggregate(ages$Age,list(ages$Indiv),mean)
Run Code Online (Sandbox Code Playgroud)
我得到每个Indiv(Group.1)的平均年龄(x):
Group.1 x
1 1 12.5
2 2 52.5
Run Code Online (Sandbox Code Playgroud)
但我想计算年龄的加权算术平均值(权重为W).如果我做:
WmeanAge <- aggregate(ages$Age,list(ages$Indiv),weighted.mean,ages$W)
Run Code Online (Sandbox Code Playgroud)
我明白了:
Error in weighted.mean.default(X[[1L]], ...) :
'x' and 'w' must have the same length
Run Code Online (Sandbox Code Playgroud)
我想我应该:
Group.1 x
1 1 13.57142857
2 2 68.33333333
Run Code Online (Sandbox Code Playgroud)
我究竟做错了什么?提前致谢!
jar*_*emi 11
Doh,你打败了我.但无论如何,这里是同时使用我的答案plyr和dplyr:
ages = data.frame(Indiv = c(1,1,2,2),
Age = c(10,15,5,100),
W = c(2,5,1,2))
library(plyr)
ddply(ages, .(Indiv), summarize,
mean = mean(Age),
wmean = weighted.mean(Age, w=W))
library(dplyr)
ages %.%
group_by(Indiv) %.%
summarise(mean = mean(Age), wmean = weighted.mean(Age, W))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7450 次 |
| 最近记录: |