tal*_*lat 15 r dataframe dplyr
我的数据采用data.frame格式,如此示例数据:
data <-
structure(list(Article = structure(c(1L, 1L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L
), .Label = c("10004", "10006", "10007"), class = "factor"),
Demand = c(26L, 780L, 2L, 181L, 228L, 214L, 219L, 291L, 104L,
72L, 155L, 237L, 182L, 148L, 52L, 227L, 2L, 355L, 2L, 432L,
1L, 156L), Week = c("2013-W01", "2013-W01", "2013-W01", "2013-W01",
"2013-W01", "2013-W02", "2013-W02", "2013-W02", "2013-W02",
"2013-W02", "2013-W03", "2013-W03", "2013-W03", "2013-W03",
"2013-W03", "2013-W04", "2013-W04", "2013-W04", "2013-W04",
"2013-W04", "2013-W04", "2013-W04")), .Names = c("Article",
"Demand", "Week"), class = "data.frame", row.names = c(NA, -22L))
Run Code Online (Sandbox Code Playgroud)
我想按周和文章总结一下需求列.为此,我使用:
library(dplyr)
WeekSums <-
data %>%
group_by(Article, Week) %>%
summarize(
WeekDemand = sum(Demand)
)
Run Code Online (Sandbox Code Playgroud)
但由于某些文章在某些星期没有销售,因此每篇文章的行数不同(仅周数与销售额在WeekSums数据框中显示).我如何调整我的数据,以便每篇文章的行数相同(每周一行),包括需求为0的周数?
输出应该如下所示:
Article Week WeekDemand
1 10004 2013-W01 1215
2 10004 2013-W02 900
3 10004 2013-W03 774
4 10004 2013-W04 1170
5 10006 2013-W01 0
6 10006 2013-W02 0
7 10006 2013-W03 0
8 10006 2013-W04 5
9 10007 2013-W01 2
10 10007 2013-W02 0
11 10007 2013-W03 0
12 10007 2013-W04 0
Run Code Online (Sandbox Code Playgroud)
我试过了
WeekSums %>%
group_by(Article) %>%
if(n()< 4) rep(rbind(c(Article,NA,NA)), 4 - n() )
Run Code Online (Sandbox Code Playgroud)
但这不起作用.在我最初的方法中,我通过将每周数字1-4的数据帧与我的rawdata文件合并来解决这个问题.这样,我每篇文章有4周(行),但是使用for循环的实现非常低效,所以我试图用dplyr(或任何其他更有效的包/函数)来做同样的事情.我们欢迎所有的建议!
G. *_*eck 14
如果没有dplyr,可以这样做:
as.data.frame(xtabs(Demand ~ Week + Article, data))
Run Code Online (Sandbox Code Playgroud)
赠送:
Week Article Freq
1 2013-W01 10004 1215
2 2013-W02 10004 900
3 2013-W03 10004 774
4 2013-W04 10004 1170
5 2013-W01 10006 0
6 2013-W02 10006 0
7 2013-W03 10006 0
8 2013-W04 10006 5
9 2013-W01 10007 2
10 2013-W02 10007 0
11 2013-W03 10007 0
12 2013-W04 10007 0
Run Code Online (Sandbox Code Playgroud)
这可以重写为magrittr或dplyr管道,如下所示:
data %>% xtabs(formula = Demand ~ Week + Article) %>% as.data.frame()
Run Code Online (Sandbox Code Playgroud)
所述as.data.frame()如果宽形式的溶液中所需的在端部可以省略.
rrs*_*rrs 11
由于dplyr正在积极开发中,我想我会发布一个更新,其中包含tidyr:
library(dplyr)
library(tidyr)
data %>%
expand(Article, Week) %>%
left_join(data) %>%
group_by(Article, Week) %>%
summarise(WeekDemand = sum(Demand, na.rm=TRUE))
Run Code Online (Sandbox Code Playgroud)
哪个产生:
Article Week WeekDemand
1 10004 2013-W01 1215
2 10004 2013-W02 900
3 10004 2013-W03 774
4 10004 2013-W04 1170
5 10006 2013-W01 0
6 10006 2013-W02 0
7 10006 2013-W03 0
8 10006 2013-W04 5
9 10007 2013-W01 2
10 10007 2013-W02 0
11 10007 2013-W03 0
12 10007 2013-W04 0
Run Code Online (Sandbox Code Playgroud)
使用tidyr> = 0.3.1现在可以写成:
data %>%
complete(Article, Week) %>%
group_by(Article, Week) %>%
summarise(Demand = sum(Demand, na.rm = TRUE))
Run Code Online (Sandbox Code Playgroud)