kit*_*Fox 4 scheme lazy-evaluation lazy-sequences accumulate racket
我正在尝试找到一个实现,它使用懒惰列表的懒惰列表变平interleave,lz-lst-accumulate这是我编写的过程.这是到目前为止的代码:
(define lz-lst-accumulate
(lambda (op initial lz)
(if (empty? lz)
initial
(op (head lz)
(lambda() (lz-lst-accumulate op initial (tail lz)))))))
(define interleave
(lambda (lz1 lz2)
(if (empty? lz1)
(lz2)
(cons (head lz1)
(interleave (lz2) (lambda() (tail lz1)))))))
(define all-div-from-flattened
(lambda (lower)
(lz-lst-accumulate interleave '() (all-div-from lower))))
(define take
(lambda (lz-lst n)
(if (= n 0)
(list)
(cons (car lz-lst)
(take (tail lz-lst) (sub1 n))))))
(define head
(lambda (lz)
(car lz)))
(define tail
(lambda (lz-lst)
((cdr lz-lst))))
(define lz-lst-map
(lambda (f lz)
(if (empty? lz)
lz
(cons (f (head lz))
(lambda () (lz-lst-map f (tail lz)))))))
; Signature: all-div-from (low)
; Type: [Number -> Lazy-list]
; Purpose: return a lazy-list of lazy-lists. The nested lazy-lists
; correspond to the integers greater than lower in an
; increasing order. Each nested lazy-list is the list of
; all integers divisible by i for some i>=lower.
; Pre-conditions: low is an integer
; Tests: > (define lz3 (all-div-from 7))
; > (take lz3 3)
; '((7 . #<procedure>) (8 . #<procedure>) (9 . #<procedure>))
; > (take (head lz3) 3)
; '(7 14 21)
; > (take (head (tail lz3)) 3)
; '(8 16 24)
(define all-div-from
(lambda(lower)
(cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
(lambda() (all-div-from (add1 lower))))))
; Signature: div-from (low int)
; Type: [[Number*Number]-> Lazy-list]
; Purpose: return the lazy-list of all integers that
; are larger than low and divisible by int
; Pre-conditions: int > low
; Tests: > (define lz1 (div-from 5 12))
; > (take lz1 3)
; '(12 24 36)
; > (define lz2 (div-from 7 10))
; > (take lz2 4)
; '(10 20 30 40)
(define div-from
(lambda (lower int)
(lz-lst-filter (lambda(x) (> x (- lower 1)))
(lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))
(define integers-from
(lambda (n) (cons n
(lambda () (integers-from (+ 1 n))))))
(define lz-lst-filter
(lambda (p lz)
(cond ((empty? lz) lz)
((p (head lz))
(cons (head lz)
(lambda () (lz-lst-filter p (tail lz)))))
(else (lz-lst-filter p (tail lz))))))
Run Code Online (Sandbox Code Playgroud)
该过程all-div-from接收下限low并返回惰性列表的惰性列表.其中的每个惰性列表由div-from接收下限low和整数组成int > low,并返回大于low且可被整除的所有整数的惰性列表int.
输入和正确输出的示例:
> (take (all-div-from-flattened 7) 10)
'(7 8 14 9 21 16 28 10 35 24)
Run Code Online (Sandbox Code Playgroud)
但是当我在翻译中尝试这一行时:
> (take (all-div-from-flattened 3) 3)
Run Code Online (Sandbox Code Playgroud)
它进入了一个无限循环.
我的实现必须使用lz-lst-accumulate,interleave和all-div-from-flattend程序.
有关如何使其工作的任何建议?
你interleave不会产生懒惰的名单; 它产生一个普通的列表:它使用cons两个参数,第二个参数没有包含在lambda.所以cons第二个论点的力量通过,引起了失控的评价:
(define interleave
(lambda (lz1 dlz2) ; "delayed" lz2
(if (empty? lz1)
(dlz2)
(cons (head lz1)
; here:
(interleave (dlz2) (lambda () (tail lz1)))))))
(define lz-lst-accumulate
(lambda (op initial lz)
(if (empty? lz)
initial
(op (head lz)
(lambda () (lz-lst-accumulate op initial (tail lz)))))))
Run Code Online (Sandbox Code Playgroud)
(all-div-from lower)产生正确的输出,( (lower . <proc1>) . <proc2> )但调用(lz-lst-accumulate interleave '() (all-div-from lower))减少为
(interleave [lower . <proc1>]
(lambda () (lz-lst-accumulate interleave '() (<proc2>))))
Run Code Online (Sandbox Code Playgroud)
这减少了
(cons lower
(interleave (lz-lst-accumulate interleave '() (<proc2>))
(lambda () (<proc1>))))
Run Code Online (Sandbox Code Playgroud)
虽然它必须减少为
(cons lower
(lambda () (interleave ....)))
Run Code Online (Sandbox Code Playgroud)
生成一个懒惰的列表.
显而易见的(现在)解决方案是添加缺失lambda:
(define interleave
(lambda (lz1 lz2)
(if (empty? lz1)
(lz2)
(cons (head lz1)
(lambda () (interleave (lz2) (lambda() (tail lz1))))))))
Run Code Online (Sandbox Code Playgroud)
现在它运行正常:
(take(all-div-from-flattened 7)10)
;值12:(7 8 14 9 21 16 28 10 35 24)
您可以通过介绍简化代码
(define integers-from-by
(lambda (n d) (cons n
(lambda () (integers-from (+ n d) d)))))
Run Code Online (Sandbox Code Playgroud)
然后,
;(define div-from
; (lambda (lower int)
; (lz-lst-filter (lambda(x) (> x (- lower 1)))
; (lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))
(define mults-from-of ; n in [int, 2*int ..], n >= lower
(lambda (lower int)
(let ((x (* (quotient (+ lower (- int 1)) int) int)))
(integers-from-by x int))))
Run Code Online (Sandbox Code Playgroud)
你也可以
(define mults-above-of ; n in [int, 2*int ..], n > lower
(lambda (lower int)
(let ((x (* (+ (quotient lower int) 1) int)))
(integers-from-by x int))))
Run Code Online (Sandbox Code Playgroud)
下一个,
; (define all-div-from
; (lambda(lower)
; (cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
; (lambda() (all-div-from (add1 lower))))))
(define all-mults-from
(lambda (lower)
(lz-lst-map (lambda (n) (mults-from-of n n))
; or just (integers-from-by n n)
(integers-from-by lower 1))))
Run Code Online (Sandbox Code Playgroud)
如果您更改interleave,以便流相结合,并切换到mults-above-of在all-mults-from定义,那么(lz-lst-accumulate interleave-ordered '() (all-mults-from-above 2))将确定所有合数的懒列表,以便通过在埃拉托色尼的筛计数的方式.
从这一点开始,让自己成为自己懒惰的无限增量筛子Eratosthenes (在该页面上搜索"SiCp")只需再迈出一步.
另一个评论:take应该调整为不强制流的额外元素.更多这里.