通过高阶累积过程展平Scheme中惰性列表的惰性列表

kit*_*Fox 4 scheme lazy-evaluation lazy-sequences accumulate racket

我正在尝试找到一个实现,它使用懒惰列表的懒惰列表变平interleave,lz-lst-accumulate这是我编写的过程.这是到目前为止的代码:

(define lz-lst-accumulate
  (lambda (op initial lz)
    (if (empty? lz)
      initial
      (op (head lz)
        (lambda() (lz-lst-accumulate op initial (tail lz)))))))

(define interleave
  (lambda (lz1 lz2)
    (if (empty? lz1)
      (lz2)
      (cons (head lz1)
        (interleave (lz2) (lambda() (tail lz1)))))))

(define all-div-from-flattened
     (lambda (lower)
       (lz-lst-accumulate interleave '() (all-div-from lower))))

(define take
  (lambda (lz-lst n)
    (if (= n 0)
      (list)
      (cons (car lz-lst)
        (take (tail lz-lst) (sub1 n))))))

(define head
  (lambda (lz)
    (car lz)))

(define tail
  (lambda (lz-lst)
    ((cdr lz-lst))))

(define lz-lst-map
  (lambda (f lz)
    (if (empty? lz)
      lz
      (cons (f (head lz))
        (lambda () (lz-lst-map f (tail lz)))))))

; Signature: all-div-from (low)
; Type: [Number -> Lazy-list]
; Purpose: return a lazy-list of lazy-lists. The nested lazy-lists 
;          correspond to the integers greater than lower in an 
;          increasing order. Each nested lazy-list is the list of 
;          all integers divisible by i for some i>=lower.
; Pre-conditions: low is an integer
; Tests: > (define lz3 (all-div-from 7))
;        > (take lz3 3)
;        '((7 . #<procedure>) (8 . #<procedure>) (9 . #<procedure>))
;        > (take (head lz3) 3)
;        '(7 14 21)
;        > (take (head (tail lz3)) 3)
;        '(8 16 24)

(define all-div-from
    (lambda(lower)
      (cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
            (lambda() (all-div-from (add1 lower))))))


; Signature: div-from (low int)
; Type: [[Number*Number]-> Lazy-list]
; Purpose: return the lazy-list of all integers that 
;          are larger than low and divisible by int
; Pre-conditions: int > low
; Tests: > (define lz1 (div-from 5 12))
;        > (take lz1 3)
;        '(12 24 36)
;        > (define lz2 (div-from 7 10))
;        > (take lz2 4)
;        '(10 20 30 40)
(define div-from
  (lambda (lower int)
    (lz-lst-filter (lambda(x) (> x (- lower 1))) 
      (lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))

(define integers-from
  (lambda (n) (cons n
    (lambda () (integers-from (+ 1 n))))))

(define lz-lst-filter
  (lambda (p lz)
    (cond ((empty? lz) lz)
          ((p (head lz)) 
             (cons (head lz) 
               (lambda () (lz-lst-filter p (tail lz)))))
          (else (lz-lst-filter p (tail lz))))))
Run Code Online (Sandbox Code Playgroud)

该过程all-div-from接收下限low并返回惰性列表的惰性列表.其中的每个惰性列表由div-from接收下限low和整数组成int > low,并返回大于low且可被整除的所有整数的惰性列表int.

输入和正确输出的示例:

 > (take (all-div-from-flattened 7) 10)
        '(7 8 14 9 21 16 28 10 35 24)
Run Code Online (Sandbox Code Playgroud)

但是当我在翻译中尝试这一行时:

> (take (all-div-from-flattened 3) 3)
Run Code Online (Sandbox Code Playgroud)

它进入了一个无限循环.

我的实现必须使用lz-lst-accumulate,interleaveall-div-from-flattend程序.

有关如何使其工作的任何建议?

Wil*_*ess 5

interleave不会产生懒惰的名单; 它产生一个普通的列表:它使用cons两个参数,第二个参数没有包含在lambda.所以cons第二个论点的力量通过,引起了失控的评价:

(define interleave
  (lambda (lz1 dlz2)    ; "delayed" lz2
    (if (empty? lz1)
      (dlz2)
      (cons (head lz1)
            ; here:
            (interleave (dlz2) (lambda () (tail lz1)))))))

(define lz-lst-accumulate
  (lambda (op initial lz)
    (if (empty? lz)
      initial
      (op (head lz)
          (lambda () (lz-lst-accumulate op initial (tail lz)))))))
Run Code Online (Sandbox Code Playgroud)

(all-div-from lower)产生正确的输出,( (lower . <proc1>) . <proc2> )但调用(lz-lst-accumulate interleave '() (all-div-from lower))减少为

(interleave [lower . <proc1>]
            (lambda () (lz-lst-accumulate interleave '() (<proc2>))))
Run Code Online (Sandbox Code Playgroud)

这减少了

(cons lower 
      (interleave (lz-lst-accumulate interleave '() (<proc2>))
                  (lambda () (<proc1>))))
Run Code Online (Sandbox Code Playgroud)

虽然它必须减少为

(cons lower 
      (lambda () (interleave ....)))
Run Code Online (Sandbox Code Playgroud)

生成一个懒惰的列表.

显而易见的(现在)解决方案是添加缺失lambda:

(define interleave
  (lambda (lz1 lz2)
    (if (empty? lz1)
      (lz2)
      (cons (head lz1)
            (lambda () (interleave (lz2) (lambda() (tail lz1))))))))
Run Code Online (Sandbox Code Playgroud)

现在它运行正常:

(take(all-div-from-flattened 7)10)
;值12:(7 8 14 9 21 16 28 10 35 24)


您可以通过介绍简化代码

(define integers-from-by
  (lambda (n d) (cons n
    (lambda () (integers-from (+ n d) d)))))
Run Code Online (Sandbox Code Playgroud)

然后,

;(define div-from
;  (lambda (lower int)
;    (lz-lst-filter (lambda(x) (> x (- lower 1))) 
;      (lz-lst-map (lambda(x) (* x int)) (integers-from 1)))))

(define mults-from-of    ; n in [int, 2*int ..], n >= lower
  (lambda (lower int)
    (let ((x (* (quotient (+ lower (- int 1)) int) int)))
      (integers-from-by x int))))
Run Code Online (Sandbox Code Playgroud)

你也可以

(define mults-above-of   ; n in [int, 2*int ..], n > lower
  (lambda (lower int)
    (let ((x (* (+ (quotient lower int) 1) int)))
      (integers-from-by x int))))
Run Code Online (Sandbox Code Playgroud)

下一个,

; (define all-div-from
;    (lambda(lower)
;      (cons (lz-lst-map (lambda(x) (* x lower)) (div-from 1 1))
;            (lambda() (all-div-from (add1 lower))))))

(define all-mults-from
  (lambda (lower)
    (lz-lst-map (lambda (n) (mults-from-of n n))
                            ; or just (integers-from-by n n)
                (integers-from-by lower 1))))
Run Code Online (Sandbox Code Playgroud)

如果您更改interleave,以便流相结合,并切换到mults-above-ofall-mults-from定义,那么(lz-lst-accumulate interleave-ordered '() (all-mults-from-above 2))将确定所有合数的懒列表,以便通过在埃拉托色尼的筛计数的方式.

从这一点开始,让自己成为自己懒惰的无限增量筛子Eratosthenes (在该页面上搜索"SiCp")只需再迈出一步.

另一个评论:take应该调整为不强制流的额外元素.更多这里.