Poo*_*rna 7 mongodb aggregation-framework
我有一个带有以下文件的物品集合.
{ "item" : "i1", "category" : "c1", "brand" : "b1" }
{ "item" : "i2", "category" : "c2", "brand" : "b1" }
{ "item" : "i3", "category" : "c1", "brand" : "b2" }
{ "item" : "i4", "category" : "c2", "brand" : "b1" }
{ "item" : "i5", "category" : "c1", "brand" : "b2" }
Run Code Online (Sandbox Code Playgroud)
我想分开汇总结果 - >按类别计算,按品牌计算.请注意,不计入(类别,品牌)
我可以使用map-reduce使用以下代码执行此操作.
map = function(){
emit({type:"category",category:this.category},1);
emit({type:"brand",brand:this.brand},1);
}
reduce = function(key, values){
return Array.sum(values)
}
db.item.mapReduce(map,reduce,{out:{inline:1}})
Run Code Online (Sandbox Code Playgroud)
结果是
{
"results" : [
{
"_id" : {
"type" : "brand",
"brand" : "b1"
},
"value" : 3
},
{
"_id" : {
"type" : "brand",
"brand" : "b2"
},
"value" : 2
},
{
"_id" : {
"type" : "category",
"category" : "c1"
},
"value" : 3
},
{
"_id" : {
"type" : "category",
"category" : "c2"
},
"value" : 2
}
],
"timeMillis" : 21,
"counts" : {
"input" : 5,
"emit" : 10,
"reduce" : 4,
"output" : 4
},
"ok" : 1,
}
Run Code Online (Sandbox Code Playgroud)
我可以通过触发两个不同的聚合命令获得相同的结果,如下所示
db.item.aggregate({$group:{_id:"$category",count:{$sum:1}}})
db.item.aggregate({$group:{_id:"$brand",count:{$sum:1}}})
Run Code Online (Sandbox Code Playgroud)
无论如何我可以通过单个聚合命令使用聚合框架来做同样的事情.
我在这里简化了我的情况,但实际上我需要从子文档数组中的字段进行分组.在我放松之后假设上面是结构.
它是一个实时查询(等待响应的人),虽然在较小的数据集上,因此执行时间很重要.
我正在使用MongoDB 2.4.
从 开始Mongo 3.4
,$facet
聚合阶段通过在同一组输入文档的单个阶段内处理多个聚合管道,大大简化了这种类型的用例:
// { "item" : "i1", "category" : "c1", "brand" : "b1" }
// { "item" : "i2", "category" : "c2", "brand" : "b1" }
// { "item" : "i3", "category" : "c1", "brand" : "b2" }
// { "item" : "i4", "category" : "c2", "brand" : "b1" }
// { "item" : "i5", "category" : "c1", "brand" : "b2" }
db.collection.aggregate(
{ $facet: {
categories: [{ $group: { _id: "$category", count: { "$sum": 1 } } }],
brands: [{ $group: { _id: "$brand", count: { "$sum": 1 } } }]
}}
)
// {
// "categories" : [
// { "_id" : "c1", "count" : 3 },
// { "_id" : "c2", "count" : 2 }
// ],
// "brands" : [
// { "_id" : "b1", "count" : 3 },
// { "_id" : "b2", "count" : 2 }
// ]
// }
Run Code Online (Sandbox Code Playgroud)
在一个大型数据集中,我会说你当前的mapReduce方法是最好的,因为这种聚合技术不适用于大数据.但可能在一个相当小的尺寸上,它可能就是你需要的:
db.items.aggregate([
{ "$group": {
"_id": null,
"categories": { "$push": "$category" },
"brands": { "$push": "$brand" }
}},
{ "$project": {
"_id": {
"categories": "$categories",
"brands": "$brands"
},
"categories": 1
}},
{ "$unwind": "$categories" },
{ "$group": {
"_id": {
"brands": "$_id.brands",
"category": "$categories"
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": "$_id.brands",
"categories": { "$push": {
"category": "$_id.category",
"count": "$count"
}},
}},
{ "$project": {
"_id": "$categories",
"brands": "$_id"
}},
{ "$unwind": "$brands" },
{ "$group": {
"_id": {
"categories": "$_id",
"brand": "$brands"
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": null,
"categories": { "$first": "$_id.categories" },
"brands": { "$push": {
"brand": "$_id.brand",
"count": "$count"
}}
}}
])
Run Code Online (Sandbox Code Playgroud)
与mapReduce输出不完全相同,你可以投入更多的阶段来改变输出格式,但这应该是可用的:
{
"_id" : null,
"categories" : [
{
"category" : "c2",
"count" : 2
},
{
"category" : "c1",
"count" : 3
}
],
"brands" : [
{
"brand" : "b2",
"count" : 2
},
{
"brand" : "b1",
"count" : 3
}
]
}
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,这涉及到数组之间的相当多的混乱,以便在同一管道流程中对"类别"或"品牌"的每一组进行分组.我再说一遍,这对于大数据不会很好,但对于像"订单中的项目"这样的东西,它可能会做得很好.
当然正如你所说,你已经有所简化了,所以第一个分组键null
要么是要么是其他的要么缩小到要null
在早期$match
阶段做这种情况,这可能是你想做的.
归档时间: |
|
查看次数: |
4461 次 |
最近记录: |