我有一个带有DatetimeIndex的数据框。这是列之一:
>>> y.out_brd
2013-01-01 11:25:00 0.04464286
2013-01-01 11:30:00 NaN
2013-01-01 11:35:00 NaN
2013-01-01 11:40:00 0.005952381
2013-01-01 11:45:00 0.01785714
2013-01-01 11:50:00 0.008928571
Freq: 5T, Name: out_brd, dtype: object
Run Code Online (Sandbox Code Playgroud)
当我尝试interpolate()在函数上使用时,我绝对不会改变:
>>> y.out_brd.interpolate(method='time')
2013-01-01 11:25:00 0.04464286
2013-01-01 11:30:00 NaN
2013-01-01 11:35:00 NaN
2013-01-01 11:40:00 0.005952381
2013-01-01 11:45:00 0.01785714
2013-01-01 11:50:00 0.008928571
Freq: 5T, Name: out_brd, dtype: object
Run Code Online (Sandbox Code Playgroud)
如何使其运作?
更新:用于生成此类数据框的代码。
time_index = pd.date_range(start=datetime(2013, 1, 1, 3),
end=datetime(2013, 1, 2, 2, 59),
freq='5T')
grid_columns = [u'in_brd', u'in_alt', u'out_brd', u'out_alt']
df = pd.DataFrame(index=time_index, columns=grid_columns)
Run Code Online (Sandbox Code Playgroud)
之后,我用一些数据填充单元格。
我有field_data包含有关铁路上下车的调查数据和station变量的数据框。我也interval_end定义了这样的功能:
interval_end = lambda index, prec_lvl: index.to_datetime() \
+ timedelta(minutes=prec_lvl - 1,
seconds=59)
Run Code Online (Sandbox Code Playgroud)
代码:
for index, row in df.iterrows():
recs = field_data[(field_data.station_name == station)
& (field_data.arrive_time >= index.time())
& (field_data.arrive_time <= interval_end(
index, prec_lvl).time())]
in_recs_num = recs[recs.orientation == u'in'][u'train_number'].count()
out_recs_num = recs[recs.orientation == u'out'][u'train_number'].count()
if in_recs_num:
df.loc[index, u'in_brd'] = recs[
recs.orientation == u'in'][u'boarding'].sum() / \
(in_recs_num * CAR_CAPACITY)
df.loc[index, u'in_alt'] = recs[
recs.orientation == u'in'][u'alighting'].sum() / \
(in_recs_num * CAR_CAPACITY)
if out_recs_num:
df.loc[index, u'out_brd'] = recs[
recs.orientation == u'out'][u'boarding'].sum() / \
(out_recs_num * CAR_CAPACITY)
df.loc[index, u'out_alt'] = recs[
recs.orientation == u'out'][u'alighting'].sum() / \
(out_recs_num * CAR_CAPACITY)
Run Code Online (Sandbox Code Playgroud)
您需要将您Series的 dtype转换float64为您的当前object. 这是一个示例来说明差异。请注意,通常objectdtypeSeries的用途有限,最常见的情况是Series包含字符串。除此之外,它们非常慢,因为它们无法利用任何数据类型信息。
In [9]: s = Series(randn(6), index=pd.date_range('2013-01-01 11:25:00', freq='5T', periods=6), dtype=object)
In [10]: s.iloc[1:3] = nan
In [11]: s
Out[11]:
2013-01-01 11:25:00 -0.69522
2013-01-01 11:30:00 NaN
2013-01-01 11:35:00 NaN
2013-01-01 11:40:00 -0.70308
2013-01-01 11:45:00 -1.5653
2013-01-01 11:50:00 0.95893
Freq: 5T, dtype: object
In [12]: s.interpolate(method='time')
Out[12]:
2013-01-01 11:25:00 -0.69522
2013-01-01 11:30:00 NaN
2013-01-01 11:35:00 NaN
2013-01-01 11:40:00 -0.70308
2013-01-01 11:45:00 -1.5653
2013-01-01 11:50:00 0.95893
Freq: 5T, dtype: object
In [13]: s.astype(float).interpolate(method='time')
Out[13]:
2013-01-01 11:25:00 -0.6952
2013-01-01 11:30:00 -0.6978
2013-01-01 11:35:00 -0.7005
2013-01-01 11:40:00 -0.7031
2013-01-01 11:45:00 -1.5653
2013-01-01 11:50:00 0.9589
Freq: 5T, dtype: float64
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2545 次 |
| 最近记录: |